开篇
TO B端的AI一直无法起色,在可以预测的未来1-2年内,TO B端的AI或许会迎来猛烈增长但不是现在。究其原因是:大多(90%以上)的企业数字化都还未完善以及根本没有“AI文化”。
大多企业还未完成数字化转型
大多数企业其实还没有进入数字化,2016年数字化浪潮才刚开始,其实到去年为止大多数企业还是没有完成数字化改造。
所谓数字化就是:万物皆API化。
零售企业数字化
拿零售企业来说以下几点数字化为重中之重,除了巨头、大厂以外,以下这些点其实大都还未做到:
- 商品主数据API化;
- 库存API化;
- 会员API化;
- 促销活动API化;
- 财务流(订单)API化;
但零售还算做得好的,很多火锅、餐饮更是无从谈起数字化改造。
医疗数字化
- 病人信息API化;
- 门诊预约API化;
- X光、CR、MR等放疗数据医学证明的API化;
目前3甲、2甲(少数)是可以做到这点,但是全国有多少医院?
制造业数字化
大家不要看不少制作业上了ERP,ERP并不是数字化改造,所谓数字化即:万物API化,是要互联互通它才可以解决“高效”和“共享”以及去中心的作用的。
因此只有SAP等ERP的统统不算是数字化,而且碍于制造业的一些信息敏感、合规等问题更加保守。
没有完成数字化的企业根本无法使用AI
拿AI去做客户标签打标这一件事来举例
当一个企业客户数据还是留存于ERP并没有完成API化时它会怎么做呢?导入导出!
于是乎,导出上百万会员数据给到AI,那么AI怎么处理?
就是吃进去。
我们分敏感数据脱敏和清洗来说。
SAAS模式的脱敏和清洗
如果我们用SAAS,就是需要在数据进AI前进行脱敏,在数据回来后再做mapping,在SAAS模式下一般我们会微调baidu paddle来做敏感数据脱敏,这个必定是要本地布署的,如果没有GPU那么至少是需要多台32C CPU的服务器的,这一块成本一个月我们算它5台(每台布署flask做API暴露调用并做成L/B模式)这一个月成本就是2万RMB。
再来看清洗。我们来看当下AI的成本,这是截止2025年1月我们更新的各AI成本价表格。
看看好像每1千Token挺便宜,我们知道一条客户数据脱敏,结合“猫娘”和数据本身,一般来回会在4,000-5,000 Token,那么同时我们要考虑到数据质量就不可能去使用7B的小模型的,一般至少是要用Claude3或者是Gpt4o同类的。
于是一条数据就是5,000*0.091=0.46元RMB,100万条数据在456,087.50元RMB。。。我们点一下:123456,6位数。这是一次清洗。
- 这个数,我还没有算embedding的成本;
- 这个数,我还没有算有时一次不够需要扩充的成本;
- 这个数,还只是一次清洗的成,周期性的经常我们是要做清洗的,这个动作是很高频的;
特别是传统企业,花在一次数据清洗上的成本7位数是很正常的。
有人说我用开源,免费会怎么样?
好,这里有一个坑!
开源的话你布署走本地布署
你得要有GPU,4090D跑DeepSeek 7B累得很,那你得要H100,还要一堆,这已经7位数没了,好家伙,做个AI给企业赋能,中7位数出去了。
所谓免费开源其实是:它免费在东西你白拿去用,但要想办法自己花钱布署吧,这就是开源和MAAS的最大区别。
开源的话也有免费的API
有有有,的确有,但有速率上的限制,一般限制为:每分钟并发请求数 + 每分钟Token消耗数一起限。
我在所有大厂云上(甚至是收费的开源)还真没看到过一分钟超过50并发的请求,而且Token数都被限制在每分钟48万左右。
因为是并发请求 + 每分钟 Token数限制,而开源免费不收费的MAAS那么它的限制额度就更少了,一般在2-10个并发每分钟,Token数限制在10万~20万。
这边需要多说一句,任何开源、商业的都是这个限制公式“并发请求 + 每分钟 Token数”。这是制约目前AI在企业端发展的最大瓶劲!
所以清洗一次100万客户数据我们要算上多线程间的调度和“休息”,平均一1分钟只能洗7-10(10条是极限)条数据。100万条数据一次清洗为:1666.67小时,差不多要。。。69天。。。。。。
知道传统大数据洗100万条数据多少时间?2-4小时内即可,如果算力够的话(就是普通的32C CPU,64C CPU)基本架构做的好是到达10-30分钟内的。对于增量的话可以到达1分钟内准实时。虽然,传统大数据洗出来的客户标签没有AI那么精准!
这就不要谈了。更何况,要走开源免费道路为什么又要选择MAAS?那还不如自己投中7位数去建GPU服务器布署72B的模型去洗呢?为什么不呢?
成本,还是成本!太贵!
有数字化的企业就会相对好一些
有数字化建设的企业集成AI相对好一些,主要问题在于大数据、数据基本清理、脱敏这些机制企业内部已经很完善了,因此AI只需要做打标。
此时完全可以放心的用MAAS机制去打。
我还是坚持AI集成企业要用MAAS,最最主要的问题是前面的这个:每分钟TOKEN数+每分钟并发数的限制使然。
你不想要花69天去做数据清洗,你至少要选择每分钟千级并发+每分钟千万TOKEN的AI,如:GPT4,AZURE上的GPT4已经放开到了每个客户可以使用:每分钟1,000并发+每分钟1千万Token的并发这么一个量给到客户来用了。
那么这就完全可以到达商用级别了。
抛开一些有的、没的来说,商业级应用肯定要使用这种 可支持“超大规模”算力的AI MAAS。
有数字化的企业一定就能做好AI项目吗?
答案也是不一定的。这是因为AI它和数字化刚出现时一样,它是作为企业革命性生产力而存在的一样东西。
虽然现在的AI在精准控制上需要付出成本高昂的代价,但是它带来的变革是革命性的。它不是一个普通的企业现有数字化业务的“外挂”这么简单。
要做成AI必须整个企业的本质上要拥抱AI、融合AI。
把AI融入企业,往往搞反了。真正的挑战,不是如何将AI放进公司,而是如何将公司本身“融入”AI,如何让AI成为企业的思维方式、运作规则和文化DNA的一部分。
在这场AI浪潮中,许多企业陷入了“技术主义”的陷阱,他们把AI当作某个部门的工具,或者是提升效率的“锦上添花”。
然而,真正的价值不在于AI作为“工具”存在,而是如何让AI成为企业的“灵魂”,与企业战略、文化、流程和人员协同运作,形成合力。
AI不仅是工具,更是企业的内生竞争力
把AI当作工具,企业就会错失其深远的战略意义。AI的真正价值,并不仅仅在于它能解决某个“点”上的问题,或者仅仅加速现有流程。它的价值在于,能够推动企业从根本上重新思考“做什么?”和“如何做?”。
如果把AI当作工具,那它就只是“附加品”,顶多给某个环节带来点提升;但如果将其视作企业的内生竞争力,那它就能彻底重塑企业的运作方式和文化理念。
要想理解这一点,可以看看人工智能的应用实例。譬如,某些互联网公司已经不再把AI看作是解决问题的工具,而是将其作为公司战略的核心。
例如,AI驱动的数据分析,不仅影响产品设计和市场预测,还直接影响公司的组织结构、决策流程,甚至企业文化的塑造。
换句话说,AI从根本上改变了公司的“思维方式”,而不仅仅是外部的技术加持。
在很多传统企业,AI被当作提升生产效率的一个手段,但实际上,AI的运作方式更像是一个灵活的大脑,它能快速反应市场的变化,及时调整战略和决策。
比方说,某能源工程制造业企业,正尝试通过AI实现全自动化生产调度,生产线能够实时自我调整,并根据需求变化精准预测并调整产量。AI的加入,不仅仅提高了效率,更深层次的改变了整个生产过程的决策方式和流程结构。
这种模式才是真正的“AI内生化”,它是战略层面、管理层面和文化层面全方位的改变。
AI的真正价值在于它的数据根基
AI能做的事,归根结底还是依赖于数据。数据是AI的“燃料”,没有足够的数据支撑,AI就无法发挥它的最大效能。但数据的价值并不是体现在单纯的存储和处理上,而是体现在如何将数据转化为可以操作的智能决策和创新能力上。
很多企业在实施AI时,往往先建个“数据仓库”,然后试图通过“算法加持”来生成价值。然而,如果数据的质量不够高,数据的使用没有“场景化”,那么AI的价值也会大打折扣。
想象一下,你有一辆豪华跑车,但如果没有合适的燃料,车子无法启动,偶发弹射起步,接下来即将是无油空转。
AI的数据依赖性,使得企业必须重新审视其信息流和数据架构。企业的每个环节,从生产线到销售端,从研发到客服,都应该是一个实时数据流动的节点。数据的产生和应用不是孤立的,而是贯穿整个公司的。尤其是在跨部门协作中,AI的价值在于它能够让各个部门的数据共享、互通互联,从而做出更准确、及时的决策。
举个例子,某家全球零售公司通过数据智能分析,不仅能够预测客户购买趋势,还能精准预测库存需求并及时调配,最大化地降低了运营成本。这些都是依靠企业内部数据的深度打通和AI的智能化应用来实现的。
AI不仅仅改变的是企业的决策过程,更重要的是它改变了员工的工作方式和思维方式。过去,员工往往是任务的执行者,依靠经验和常规流程来完成工作。
而现在,AI能够在整个过程中提供实时反馈、优化方案,甚至能根据市场的变化主动做出调整。员工的角色从传统的“执行者”转变为“决策者”和“创新者”。
员工不再是单纯的“流水线工人”,而是与AI协作的“智能工人”。
想象一下,曾经在传统制造业中,工人只负责完成任务,但现在,通过AI的赋能,工人能够根据实时数据和预测信息调整生产节奏,甚至能主动发现潜在问题并提出改进建议。这种转变不仅提升了员工的工作效率,更激发了他们的创新能力和主动性。
这种转变不是一天两天的事情,而是需要企业文化的深刻变革。企业管理层必须认识到,AI赋能的不仅仅是技术,更重要的是它塑造了一种基于数据驱动、结果导向的工作文化。
过去的员工就像是按照食谱做菜的厨师,而AI赋能后的员工,则是那些能在火候和口味之间完美调整的主厨。简单说,AI给了员工“直觉”,而不仅仅是“指示”。
很多企业误以为AI的引入只是技术部门的事情,只有IT部门在操作系统和平台,而其他部门则照常运转。这种想法,本质上是把AI当作一个“局部工具”来看待,而忽视了它作为企业“全局大脑”的作用。
想象一下,一个健康的企业像一个完备的生物体,跨部门的协作就像是各个器官的协同工作,而AI就是大脑。
大脑不仅仅控制某个器官的运作,它还通过神经系统来传递信息,协调所有部件的协作。企业各个部门也应如此,AI应该连接并协调所有部门的数据流、决策流、工作流,使得信息的流动高效、智能。
例如,销售、市场、产品和客服等部门之间的协作往往是割裂的,每个部门都依赖自己的数据和视角进行决策。通过AI的引入,各个部门能够实时共享数据,进行多维度的协作。
这不仅提升了效率,更重要的是,它让决策变得更加统一和精准。
例如,销售团队可以基于市场团队的预测分析调整销售策略,而产品团队则能根据销售数据调整产品定位。这样的协同作用,能够让企业在市场竞争中占据先机。
企业如何将AI融入运营体系,才能释放最大潜力?这不仅仅是技术上的问题,它涉及到战略、文化和管理方式的根本性变革。企业不应将AI视作外部工具,而应该把它作为核心竞争力深度嵌入到公司中,成为企业的一部分。要实现这一目标,企业需要关注以下几个关键点:
AI不仅是工具,而是企业的内生竞争力,它能根本改变企业的战略方向、运营模式和文化理念。
数据是AI的燃料,高质量的数据是AI能够发挥最大效能的前提,企业必须打破信息孤岛,确保数据的流动与共享。
AI赋能员工的角色转变,它将员工从“执行者”转变为“智能决策者”和“创新者”,这要求企业文化的深度转型。
AI驱动跨部门协作,AI应该帮助企业打破部门间的壁垒,实现数据共享,促进高效协同。
AI的深度融入才能释放其最大潜力,将AI与企业的战略、文化和流程深度融合,才能在激烈的市场竞争中占据先机。
通过AI,企业可以在创新、效率和竞争力方面实现质的飞跃,成为行业中的引领者,不然只能成为先进技术的跟风者。
这,或许就是原生AI企业,最近扎堆儿成立的意义。
是什么阻挠企业AI发展的进程呢?
还是企业的本质文化占到了70%,30%是当下AI的成本。
前面说了,成本虽然还没有完全降下来,但是通过合理的手段、聪明的实施方式我们还是可以做到控制住成本的,成本倒不是主要阻挠企业实施AI的问题。
关键问题在于数字化了的企业本身已经有了完备的系统、体系。已经可以满足企业日常数字化运营的需求了。因此没有完全从根上养成AI的企业文化,也没有在实施AI项目时正确、合理、客观的设置边界以及科学的方法论,从而导致了AI类项目实施时成本过大而实际效果低于预期。
要知道数字化企业从有数字化转型开始也是付出了8-9位数的成本并持续4-5年才逐步完善的。现在整体项目实施上的风气不好,指望着引进一个AI企业就有了本质的改变,急功近利!
这是错误的观念。抱着这样的观念也是永远实施不好AI的。
必须从本质上、从底层养成AI基因、造就真正AI原生公司,那么这样的公司在AI成熟后一定会发生质变,这样的公司也能屹立于未来而长久。
这也不是:你是一个大厂就可以做到,相反,大厂会被具有AI基因的小厂取代。
未来可期
DeepSeek的出现目前来看的确是动摇到了AI界的根,它带来的倒不是什么超过这个那个,核心是它的训练方式可以极大的降低成本。
可以想像一下,假设DS的一切是真的,那么不久后可能在1-2年内企业自己私有布署模型可以大规模布署了,同时呢训练成本的降低导致AI不断的降本这就进一步增加了AI的普世化。
到那时AI会便宜到如1度电、2度电的电费,那么再碰到数据打标、数据清洗或者实时清洗就会变成Redis、ES、Hadoop、Clickhouse那么普及。
要想加快速度,几千块钱增加几组运服务器就可以搞定了。所以在很快的未来我们可以看到这一天。
但还是最后要做一下总结。
- 企业的数字化转型是根,不要指望一个没有数字化的企业一步踏入AI,这是不可能的,同时这也是创业者需要避免的“坑”。
- 有数字化的企业要有危机感,这2年AI的表现的确可能如你们所说:现有体系已经可以满足了为什么我要花这个钱去实施AI。。。想想2014年时大家还在嘲笑数字化转型时突然就在2015年年中左右,那些还没有数字化转型的企业是不具备接入美团、百饿、JDDJ、TMALL这些O2O渠道从而变成全渠道获客而让自己企业的利润成倍增长的。
可以这么说,在2014年没有赶上数字化转型的那一批企业将是这1-2年里那些本身数字化完备但没有形成AI基因企业的前车之鉴。
朋友们,未来无限光明、时不我待,何来时间躺平!
未来可期,让我们拥抱AI、拥包这个时代的红利吧!
今天就先分享到这。