第一章 星际之门:一场AI领域的「登月计划」
1.1 从「曼哈顿计划」到「星际之门」
奥特曼在直播中首次展示「星际之门」首期工厂实景时,德州阿比林的875英亩土地上,46.5万平方米的建筑群已初具规模。这一规模堪比纽约中央公园(3.41平方公里),但其野心远不止于此——计划在4年内建成20座超算中心,总耗资5000亿美金,相当于曼哈顿计划(230亿美金)与阿波罗计划(254亿美金)的总和的10倍以上。
1.2 资金迷雾:1000亿美金的「真实成本」
马斯克曾公开嘲讽「星际之门」的融资规模,称「软银实际融资不足100亿美金」。但分析师指出,奥特曼团队采用的「总拥有成本(TCO)」计算方式,将硬件采购、电力、运维、债务融资等全周期成本纳入其中。例如,首期1000亿美金中,仅硬件采购占490亿,其余510亿用于电力、场地租赁及长期运营。
1.3 技术野心:分布式训练的「算力核爆」
「星际之门」的终极目标是实现「一次训练覆盖所有数据中心」。以德州阿比林的10座数据中心为例,其核心IT算力可达1.8GW,若复制4个同等规模的基地,总算力将达9GW——这相当于将全球所有现有AI训练算力集中到一次任务中。
第二章 星际之门的「硬件心脏」:70万块GPU的军备竞赛
2.1 英伟达的「黄金时代」
首期部署的10万台GB200算力集群,加上后续的GB300和VR200,总计70万块GPU将由英伟达独家供应。以GB200为例,每块GPU的功率约300瓦,70万块总功率达210兆瓦,相当于一座小型城市的用电量。
硬件型号 | 数量(万块) | 功率/块(瓦) | 总功率(兆瓦) |
---|---|---|---|
GB200 | 10 | 300 | 30 |
GB300 | 20 | 400 | 80 |
VR200 | 40 | 500 | 200 |
2.2 电力与冷却的「生死时速」
1.8GW的核心IT算力需要配套的电力支持。德州阿比林的「Clean Campus」园区已获得2.2GW供电能力,但分析师警告:若未来升级至VR200(功率密度更高),PUE(能源使用效率)可能突破1.25的极限,导致冷却成本激增。
2.3 软银的「隐形风险」
软银承诺注资190亿美金,但其账面资金不足,可能通过出售ARM股份补足缺口。ARM股价因「技术合作伙伴」标签一度暴涨16%,但分析师指出其实际贡献仅限于CPU设计,真正的算力引擎仍由英伟达主导。
第三章 赢家与输家:微软的「战略失算」
3.1 微软:从盟友到旁观者
微软曾向OpenAI注资800亿美金,但「星际之门」的合资企业排除了微软的直接参与。尽管微软保留「优先购买权」,但分析师认为其「不愿承担风险」的立场已导致OpenAI技术控制权转移。例如,负责合作的高管Chris Young在计划公布后突然离职,暗示微软内部的分歧。
3.2 甲骨文:基建帝国的崛起
甲骨文不仅提供数据中心建设,还承担供应链物流管理,其角色从「云服务供应商」升级为「算力基建巨头」。德州阿比林的10座数据中心由甲骨文与Lancium、Crusoe合作运营,未来可能成为AI算力的「亚马逊AWS第二」。
3.3 马斯克的「反击时刻」
马斯克在推特上嘲讽「星际之门」的融资真实性,但其团队已宣布在田纳西州孟菲斯启动类似计划。尽管初期规模较小,但马斯克的「平民化算力」策略(如利用二手矿机)可能形成差异化竞争。
第四章 未来:算力战争的「新战场规则」
4.1 分布式训练的「量子跃迁」
「星际之门」的核心技术是「跨数据中心分布式训练」。通过Marvell和Ciena的高速互联技术,算力可无缝调配,例如将训练任务拆分至不同州的数据中心,再合并结果。这将使AI模型的迭代速度提升数十倍。
4.2 投资逻辑的「范式转移」
传统科技投资聚焦于单点突破(如芯片性能),而「星际之门」证明了「系统级算力」才是新战场。未来,AI公司的竞争力将取决于其整合电力、土地、供应链的「基建能力」,而非单纯的技术专利。
4.3 人类的「算力焦虑」
当5000亿美金砸向AI,普通人可能问:这与我何干?答案藏在细节中:
- 医疗:药物研发时间从10年缩短至数月;
- 气候:气候模型精度提升100倍;
- 教育:个性化学习系统覆盖全球。
但风险同样存在——算力垄断可能导致技术伦理失控,例如AI武器化或信息操控。
星际之门,通往何方?
奥特曼的计划如同一场豪赌:用5000亿美金押注「分布式算力」的未来,既可能重塑AI产业格局,也可能因技术瓶颈或资金链断裂而崩塌。但无论如何,这场「星际远征」已为人类划定了一个新坐标——在算力的星海中,我们终将找到属于自己的答案。