AI Agent开发第64课-DIFY和企业现有系统结合实现高可配置的智能零售AI Agent(上)

开篇

我们之前花了将近10个篇章讲Dify的一些基础应用,包括在讲Dify之前我们讲到了几十个AI Agent的开发例子,我不知道大家发觉了没有,在AI Agent开发过程中我们经常会伴随着这样的一些问题:

  1. 需要经常改猫娘;
  2. 需要经常改调用LLM的参数,甚至在一个流程中有3个节点,每个节点用的LLM都不一样;
  3. 一个流程里如果含有多个LLM调用很耗时,但实际对于客户来说这是“一步体验”,那么如何即可以取得多个中间结果又可以把耗时压缩到一次Stream调用?
  4. 一定都要用Stream模型?一定都要用JSON CALL?当JSON CALL含在Stream里怎么办?

上述这4类问题,是让所有的AI Agent开发们“挠心”的,在之前我们用langchain可以说基本能解决这些问题,可是解决后我们发觉这个代码已经成了“屎山”,自己都看不懂也很难维护。亦或者很简单的一个步骤因为langchain的设置、配置的原因要绕好几层,最后开发完性能也不太好。

而现在有了Dify,这4类问题全部可以解决了,而且是可以做到生产时“可视化的配置即刻可解决”。前提是,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TGITCIC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值