数据分析算法
ligengdipan
这个作者很懒,什么都没留下…
展开
-
分类算法
【分类】就是通过学习得到一个目标函数(通常也称作分类模型,即分类器),借助分类器将未知类别的数据对象映射到某一个给定的类别中。分类和回归都可以用于预测。分类的目标属性(因变量)是离散属性(名词型),而回归的目标属性(因变量)是连续属性(数值型)。 分类和聚类的区别在于,分类要求训练集必须给定类别标签,同时构建的分类器可以用于预测,而聚类用于对于未知类别的样本进行训练,发现相似群体,并人工根据群体特...原创 2019-04-28 09:46:03 · 1716 阅读 · 0 评论 -
回归算法
【回归】就是用属性的历史数据预测未来的趋势。回归首先假设一些已知类型的函数可以拟合目标数据,然后利用某种误差分析确定一个与目标数据拟合程度最好的函数。回归模式的函数定义与分类模型相似,主要差别在于分类模型采取离散预测值(例如类标号),而回归模式采取采取的预测值。回归算法在解决实际问题时经常会把数据拆分为两个数据集:训练数据集、测试数据集。通过数据挖掘算法对训练数据集进行建模,寻找X和Y之间...原创 2019-04-29 09:39:24 · 3680 阅读 · 1 评论 -
数据挖掘6大类基本算法
聚类分析:目标是通过对无标记训练样本的学习,揭示数据内在的规律及性质。KMeansK-Means聚类算法适用于对球形簇分布的数据聚类分析,其可应用于客户细分、市场细分等分析场景。该算法对空间需求及时间需求均是适度的,另外算法收敛速度很快。算法难以发现非球形簇,且对噪声及孤立点较为敏感模糊C均值模糊聚类分析作为无监督机器学习的主要技术之一,是用模糊理论对重要数据分析和建模的方法。建立...原创 2019-06-12 00:08:30 · 3000 阅读 · 0 评论