用户行为分析案例——天池数据集User Behavior Data from Taobao

本文基于阿里云天池的用户行为数据集,运用MySQL和Navicat进行数据处理,分析了网站流量、用户粘性、商品销售情况。10200位用户的行为数据显示,网站流量在12月2日显著增加,转化漏斗显示用户从浏览到购买的转化率较低,但用户留存率和复购率表现良好。商品销售主要依赖长尾商品,而非爆款。建议优化商品页面和用户匹配,提升转化率和用户复购。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明

本次数据分析基于阿里云天池数据集(用户行为数据集),使用转化漏斗,AARRR模型,对常见电商分析指标,包括转化率,PV,UV,留存率,复购率等进行分析,分析过程中使用MySQL以及Navicat进行数据预览与清洗处理,使用Excel进行数据可视化。

一、数据集与分析目的
1、数据集
字段 说明
user_id 整数类型,序列化后的用户ID
item_id 整数类型,序列化后的商品ID
category_id 整数类型,序列化后的商品所属类目ID
behaviortype 字符串,枚举类型,包括(‘pv’, ‘buy’, ‘cart’, ‘fav’)
timestamps 行为发生的时间戳

该数据集记录用户在淘宝网站浏览商品产生的行为信息。由于数据集过大 ,选取其中10200位用户,共105万条数据。

2、分析目的

1)了解网站流量情况;
2)了解该阶段网站用户粘性以及用户行为习惯;
3)了解网站商品销售情况;
分析逻辑如下:
在这里插入图片描述

二、数据处理
1、数据预览

MySQL建表,使用Navicat导入数据

use userbehavior;
create table user(
user_id int not null,
item_id int not null,
category_id int not null,
behavetype varchar(10) not null,
times int not null,
constraint user_behave PRIMARY KEY (user_id,item_id,times))
2、数据处理

(1)日期处理
将行为发生时间转为datetime类型,获取其发生日期及时间

SET SQL_SAFE_UPDATES = 0;
ALTER TABLE user ADD COLUMN datentime TIMESTAMP(0) NULL;
UPDATE user 
SET datentime = FROM_UNIXTIME(times);
ALTER TABLE user ADD COLUMN dates CHAR(10) NULL;
UPDATE user
SET dates = SUBSTRING(datentime FROM 1 FOR 10);
ALTER TABLE user ADD COLUMN hours CHAR(10) NULL;
UPDATE user
SET hours = SUBSTRING(datentime FROM 12 FOR 2);

(2)数据清洗

DELETE FROM user
WHERE datentime < '2017-11-25 00:00:00'
OR datentime > '2017-12-04 00:00:00';
三、数据提取与分析
1、网站流量分析
  • 创建用户行为视图
use taobaouser;
create view userbehave as
select user_id,count(behavetype) num,sum(if(behavetype='pv',1,0)) pv,sum
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值