LeetCode: 240. 搜索二维矩阵 II

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

每行的元素从左到右升序排列。
每列的元素从上到下升序排列。
 

示例 1:


输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true
示例 2:


输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false

提示:

m == matrix.length
n == matrix[i].length
1 <= n, m <= 300
-109 <= matix[i][j] <= 109
每行的所有元素从左到右升序排列
每列的所有元素从上到下升序排列
-109 <= target <= 109

分析:

       该矩阵每行和每列都是保持升序排列的,位于矩阵左下角和右上角的元素是很特别的,以右上角元素为例:在此行中该元素左边所有的数都比它小,在此列中该元素下边所有的数都比它大。我们可以利用该性质减少搜索空间。设row = 0,column = matrix[0].size() - 1,将matrix[row][column]与target进行对比。如果matrix[row][column] > target,那么我们可以排除这一列的所有元素,因为它已经是该列最小的元素了,所以column--;如果matrix[row][column] < target,那么我们可以排除这一行所有的元素,因为它已经是该行最大的元素了,所以row++。通过改变row和column,我们可以有效缩减搜索空间,提高效率。个人觉得有一篇题解说的很不错,双指针的本质是利用题目中所具备的性质,排除掉一部分不包含正确答案的组合。值得回味。

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        int row = 0, column = matrix[0].size() - 1;
        while(row < matrix.size() && column >= 0){
            if(matrix[row][column] < target)
                row++;
            else if(matrix[row][column] > target)
                column--;
            else
                return true;
        }
        return false;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值