编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:
每行的元素从左到右升序排列。
每列的元素从上到下升序排列。
示例 1:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true
示例 2:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false
提示:
m == matrix.length
n == matrix[i].length
1 <= n, m <= 300
-109 <= matix[i][j] <= 109
每行的所有元素从左到右升序排列
每列的所有元素从上到下升序排列
-109 <= target <= 109
分析:
该矩阵每行和每列都是保持升序排列的,位于矩阵左下角和右上角的元素是很特别的,以右上角元素为例:在此行中该元素左边所有的数都比它小,在此列中该元素下边所有的数都比它大。我们可以利用该性质减少搜索空间。设row = 0,column = matrix[0].size() - 1,将matrix[row][column]与target进行对比。如果matrix[row][column] > target,那么我们可以排除这一列的所有元素,因为它已经是该列最小的元素了,所以column--;如果matrix[row][column] < target,那么我们可以排除这一行所有的元素,因为它已经是该行最大的元素了,所以row++。通过改变row和column,我们可以有效缩减搜索空间,提高效率。个人觉得有一篇题解说的很不错,双指针的本质是利用题目中所具备的性质,排除掉一部分不包含正确答案的组合。值得回味。
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int row = 0, column = matrix[0].size() - 1;
while(row < matrix.size() && column >= 0){
if(matrix[row][column] < target)
row++;
else if(matrix[row][column] > target)
column--;
else
return true;
}
return false;
}
};