【OI学习笔记】数论-欧拉函数

“读读欧拉,他是所有人的老师”——法国数学家拉普拉斯

upd:
2022/8/29 修正文章中的 Latex 用法

板块:基础数论
前置知识:唯一分解定理
难度:较易
前置知识一览:

  • 唯一分解定理:对于一个数 n ∈ N n\in N nN n n n 不为质数,则 n n n 可以被唯一分解为 n = ∏ p i k i n=\prod p_i^{k_i} n=piki p i p_i pi 为质数)。最早的证明由欧几里得给出。

什么是欧拉函数-定义

计算 1 ∼ n 1\sim n 1n 中与 n n n 成互质数的个数的称为欧拉函数,记作 φ ( n ) \varphi(n) φ(n).形式化地,设 n = ∏ i = 1 n p i k i n=\prod \limits_{i=1}^{n} p_i^{k_i} n=i=1npiki,则 φ ( n ) = n ∏ i = 1 n ( 1 − 1 p i ) = ∏ i = 1 n p i k i − 1 × ( p i − 1 ) \varphi(n)=n\prod\limits_{i=1}^{n} (1-\frac{1}{p_i})=\prod \limits_{i=1}^{n} p_i^{k_i-1}\times (p_i-1) φ(n)=ni=1n(1pi1)=i=1npiki1×(pi1)

欧拉函数为什么对-证明

已知欧拉函数是一个积性函数,当 m , n m,n m,n 互质时, φ ( n m ) = φ ( m ) × φ ( n ) \varphi(nm)=\varphi(m)\times \varphi(n) φ(nm)=φ(m)×φ(n)
由唯一分解定理可知 n = ∏ i = 1 x p i k i n=\prod \limits_{i=1}^{x} p_i^{k_i} n=i=1xpiki
所以 φ ( n ) = ∏ i = 1 x φ ( p i k i ) \varphi(n)=\prod \limits_{i=1}^{x} \varphi(p_i^{k_i}) φ(n)=i=1xφ(piki)
对于 ∀ s , φ ( p s k s ) = p s k s − p s k s − 1 \forall s,\varphi(p_s^{k_s})=p_s^{k_s}-p_s^{k_s-1} s,φ(psks)=pskspsks1
从定义出发 φ ( p s k s ) \varphi(p_s^{k_s}) φ(psks) 等于小于或等于 p s k s p_s^{k_s} psks 的正整数中与 p s k s p_s^{k_s} psks 互质的数的总数,
从 1 到 p s k s p_s^{k_s} psks 中共有 p s k s p_s^{k_s} psks 个数字,其中与 p s k s p_s^{k_s} psks 互质的数有 p s , 2 p s , . . . , p s k s − 1 × p s p_s,2p_s,...,p_s^{k_s-1}\times p_s ps,2ps,...,psks1×ps,共 p s k s − 1 p_s^{k_s-1} psks1 项,
所以 φ ( p s ) = p s k s − p s k s − 1 = p s a s × ( 1 − 1 p s ) \varphi(p_s)=p_s^{k_s}-p_s^{k_s-1}=p_s^{a_s}\times (1-\frac{1}{p_s}) φ(ps)=pskspsks1=psas×(1ps1).
因此有:
φ ( n ) = ∏ i = 1 n φ ( p i k i ) = ∏ i = 1 n ( p i k i − p i k i − 1 ) = ∏ i = 1 n p i k i × ( 1 − 1 p i ) = ∏ i = 1 n p i k i ∏ i = 1 n ( 1 − 1 p i ) = n × ∏ i = 1 n ( 1 − 1 p i ) . \varphi(n)=\prod\limits_{i=1}^{n}\varphi(p_i^{k_i})\\ =\prod\limits_{i=1}^{n}(p_i^{k_i}-p_i^{k_i-1})\\ =\prod\limits_{i=1}^{n}{p_i^{k_i}\times(1-\frac{1}{p_i})}\\ =\prod\limits_{i=1}^{n}p_i^{k_i}\prod\limits_{i=1}^{n}(1-\frac{1}{p_i})\\ =n\times\prod\limits_{i=1}^{n}(1-\frac{1}{p_i}). φ(n)=i=1nφ(piki)=i=1n(pikipiki1)=i=1npiki×(1pi1)=i=1npikii=1n(1pi1)=n×i=1n(1pi1).
至于我给出的另外一个形式,是这样得来的,由上式的倒数第二行得出:
∏ i = 1 n p i k i × ( 1 − 1 p i ) = ∏ i = 1 n ( p i k i − p i k i − 1 ) = ∏ i = 1 n ( p i k i − 1 × p i − p i k i − 1 ) = ∏ p i k i − 1 × ( p i − 1 ) \prod\limits_{i=1}^{n}p_i^{k_i}\times (1-\frac{1}{p_i})\\ =\prod\limits_{i=1}^{n}(p_i^{k_i}-p_i^{k_i-1})\\ =\prod\limits_{i=1}^{n}(p_i^{k_i-1}\times p_i-p_i^{k_i-1})\\ =\prod p_i^{k_i-1}\times (p_i-1) i=1npiki×(1pi1)=i=1n(pikipiki1)=i=1n(piki1×pipiki1)=piki1×(pi1)

欧拉函数怎么实现-代码

公式法求 φ ( n ) \varphi(n) φ(n)

这里用的公式是我给出的两个公式的前者。
因为每次乘的是 1 − 1 p i 1-\frac{1}{p_i} 1pi1,那么把 1 看做 p i p i \frac{p_i}{p_i} pipi,也就是 p i p i − 1 p i = p i − 1 p i \frac{p_i}{p_i}-\frac{1}{p_i}=\frac{p_i-1}{p_i} pipipi1=pipi1.

	    scanf("%d", &n);
        int res = n;
        for (int i = 2; i <= n / i; i++)
        {
            if (n % i == 0)
            {
                res = res / i * (i - 1); //做了一点点小小的优化
                while (n % i == 0) n /= i;
            }
        }
        if (n > 1) res = res / n * (n - 1);
        printf("%d\n", res);

用欧拉筛求所有数的欧拉函数和

#include <iostream>
#include <cstdio>

using namespace std;

const int N = 1e6 + 10;

typedef long long LL;

int n;
int primes[N], phi[N], cnt;
bool st[N];

LL get_eulers(int x)
{
    phi[1] = 1;
    for (int i = 2; i <= x; i++)
    {
        if (!st[i])
        {
            primes[cnt++] = i;
            phi[i] = i - 1;
        }
        for (int j = 0; primes[j] <= x / i; j++)
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0)
            {
                phi[primes[j] * i] = phi[i] * primes[j];
                break;
            }
            phi[primes[j] * i] = phi[i] * (primes[j] - 1);
        }
    }
    
    LL res = 0;
    for (int i = 1; i <= x; i++) res += phi[i];
    
    return res;
}

int main()
{
    scanf("%d", &n);
    printf("%lld", get_eulers(n));
    
    return;
}

*扩展:

  • 欧拉定理: ∀ a ⊥ n , a φ ( n ) ≡ 1 (   m o d   n ) \forall a \perp n,a^{\varphi(n)}\equiv 1 (\bmod n) an,aφ(n)1(modn)。对于任意一个与 n n n 互质的数 a a a a φ ( n ) a^{\varphi(n)} aφ(n) 与 1 对模 n n n 同余。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oier_Asad.Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值