洛谷 3907 圈的异或 题解

该博客详细介绍了如何解决洛谷3907题目的过程,主要涉及无向图的边权异或和判断。博主通过维护DFS序,利用前缀和来检测每个环的边权异或和是否为0,从而判断图中所有环的条件是否满足。给出的具体思路和代码实现展示了如何暴力搜索并检查环的属性,达到O(n+m)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

博客观赏效果更佳

题意简述

给定一个无向图,点数和边数 < = 50 <=50 <=50(但你完全珂以当成 2 e 5 2e5 2e5来做),边有边权,判断这个图是否每个环的边权的异或和都是 0 0 0

思路框架

暴力找每个环,根据 D F S DFS DFS序维护异或和,然后用前缀和维护这个环的异或和,判断是否为 0 0 0即珂。

具体思路

首先维护 D F S DFS DFS序是显然的。然后维护一下 v i s vis vis,表示有没有访问过。

如果点 u u u能到一个点 v v v,并且上一个点是 f a fa fa,满足: v ! = f a v!=fa v!=fa v v v被访问过了,那么 v v v u u u这些点的 D F S DFS DFS序是连续的且组成一个环。

s u m [ i ] sum[i] sum[i]表示 D F S DFS DFS序从 1 1 1 i i i这些点上面的边的异或和。那么, s u m [ u ] sum[u] sum[u]异或 s u m [ v ] sum[v] sum[v]就是 u u u v v v除了最后一条边的异或和了。然后我们再异或上最后一条边,就是 u u u v v v这条,就是这个环的异或和。如果不是 0 0 0,就不要继续搜了。

然后暴力跑一遍即珂。这样的话,时间复杂度就是 O ( n + m ) O(n+m) O(n+m)了,很强。(那为什么数据只有 < = 50 <=50 <=50?)

代码

#include <bits/stdc++.h>
using namespace std;
namespace Flandre_Scarlet
{
    #define N 1333
    #define int long long 
    #define MEM(x,a) memset(x,a,sizeof(x))
    #define FK(x) MEM(x,0)
    #define F(i,l,r) for(int i=l;i<=r;++i)
    #define D(i,r,l) for(int i=r;i>=l;--i)
    #define Tra(i,u) for(int i=G.Start(u),__v=G.To(i);~i;i=G.Next(i),__v=G.To(i))                      

    class Graph
    {
    public:
        int head[N];
        struct node
        {
            int To,Label,Next;
        }Ed[N<<3];
        int EdgeCount=0;
        void clear()
        {
            MEM(head,-1);MEM(Ed,-1);
            EdgeCount=-1;
        }
        void AddEdge(int u,int v,int w=1)
        {
            ++EdgeCount;
            Ed[EdgeCount]=(node){v,w,head[u]};
            head[u]=EdgeCount;
        }
        void Add2(int u,int v,int w=1){AddEdge(u,v,w),AddEdge(v,u,w);}

        int Start(int u){return head[u];}
        int To(int u){return Ed[u].To;}
        int Next(int u){return Ed[u].Next;}
        int Label(int u){return Ed[u].Label;}
    }G;

    int n,m;
    void R1(int &x)
    {
        x=0;char c=getchar();int f=1;
        while(c<'0' or c>'9') f=(c=='-')?-1:1,c=getchar();
        while(c>='0' and c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
        x=(f==1)?x:-x;
    }
    void Input()
    {
        R1(n),R1(m);
        G.clear();
        F(i,1,m) 
        {
            int u,v,w;
            R1(u),R1(v),R1(w);
            G.Add2(u,v,w);
        }
    }

    bool vis[N];
    int sum[N];
    bool End=0;
    void DFS(int u,int f,int s)
    {
        if (End) return;

        vis[u]=1;sum[u]=s;
        Tra(i,u)
        {int v=__v;
            if (!vis[v])
            {
                DFS(v,u,s^G.Label(i));
            }
            else if (v!=f and sum[u]^sum[v]^G.Label(i))
            {
                End=1;return;
            }
        }
    }
    void Soviet()
    {
        FK(vis);FK(sum);
        End=0;

        F(i,1,n)
        {
            if (!vis[i]) 
            {
                if (!End) DFS(i,0,0);
                else break;
            }
        }
        puts(End?"No":"Yes");
    }

    #define Flan void
    Flan IsMyWife()
    {
        int t;R1(t);
        while(t--)
        {
            Input();
            Soviet();
        }
    }
    #undef int //long long 
}
int main()
{
    Flandre_Scarlet::IsMyWife();
    getchar();getchar();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值