题意简述
给定一个无向图,点数和边数 < = 50 <=50 <=50(但你完全珂以当成 2 e 5 2e5 2e5来做),边有边权,判断这个图是否每个环的边权的异或和都是 0 0 0。
思路框架
暴力找每个环,根据 D F S DFS DFS序维护异或和,然后用前缀和维护这个环的异或和,判断是否为 0 0 0即珂。
具体思路
首先维护 D F S DFS DFS序是显然的。然后维护一下 v i s vis vis,表示有没有访问过。
如果点 u u u能到一个点 v v v,并且上一个点是 f a fa fa,满足: v ! = f a v!=fa v!=fa且 v v v被访问过了,那么 v v v到 u u u这些点的 D F S DFS DFS序是连续的且组成一个环。
用 s u m [ i ] sum[i] sum[i]表示 D F S DFS DFS序从 1 1 1到 i i i这些点上面的边的异或和。那么, s u m [ u ] sum[u] sum[u]异或 s u m [ v ] sum[v] sum[v]就是 u u u到 v v v除了最后一条边的异或和了。然后我们再异或上最后一条边,就是 u u u到 v v v这条,就是这个环的异或和。如果不是 0 0 0,就不要继续搜了。
然后暴力跑一遍即珂。这样的话,时间复杂度就是 O ( n + m ) O(n+m) O(n+m)了,很强。(那为什么数据只有 < = 50 <=50 <=50?)
代码
#include <bits/stdc++.h>
using namespace std;
namespace Flandre_Scarlet
{
#define N 1333
#define int long long
#define MEM(x,a) memset(x,a,sizeof(x))
#define FK(x) MEM(x,0)
#define F(i,l,r) for(int i=l;i<=r;++i)
#define D(i,r,l) for(int i=r;i>=l;--i)
#define Tra(i,u) for(int i=G.Start(u),__v=G.To(i);~i;i=G.Next(i),__v=G.To(i))
class Graph
{
public:
int head[N];
struct node
{
int To,Label,Next;
}Ed[N<<3];
int EdgeCount=0;
void clear()
{
MEM(head,-1);MEM(Ed,-1);
EdgeCount=-1;
}
void AddEdge(int u,int v,int w=1)
{
++EdgeCount;
Ed[EdgeCount]=(node){v,w,head[u]};
head[u]=EdgeCount;
}
void Add2(int u,int v,int w=1){AddEdge(u,v,w),AddEdge(v,u,w);}
int Start(int u){return head[u];}
int To(int u){return Ed[u].To;}
int Next(int u){return Ed[u].Next;}
int Label(int u){return Ed[u].Label;}
}G;
int n,m;
void R1(int &x)
{
x=0;char c=getchar();int f=1;
while(c<'0' or c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0' and c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
x=(f==1)?x:-x;
}
void Input()
{
R1(n),R1(m);
G.clear();
F(i,1,m)
{
int u,v,w;
R1(u),R1(v),R1(w);
G.Add2(u,v,w);
}
}
bool vis[N];
int sum[N];
bool End=0;
void DFS(int u,int f,int s)
{
if (End) return;
vis[u]=1;sum[u]=s;
Tra(i,u)
{int v=__v;
if (!vis[v])
{
DFS(v,u,s^G.Label(i));
}
else if (v!=f and sum[u]^sum[v]^G.Label(i))
{
End=1;return;
}
}
}
void Soviet()
{
FK(vis);FK(sum);
End=0;
F(i,1,n)
{
if (!vis[i])
{
if (!End) DFS(i,0,0);
else break;
}
}
puts(End?"No":"Yes");
}
#define Flan void
Flan IsMyWife()
{
int t;R1(t);
while(t--)
{
Input();
Soviet();
}
}
#undef int //long long
}
int main()
{
Flandre_Scarlet::IsMyWife();
getchar();getchar();
return 0;
}