
数据仓库
文章平均质量分 58
lightupworld
这个作者很懒,什么都没留下…
展开
-
字节面经|年薪70W|大数据|四面+定级面|已拿Offer
【引言】今天分享的是字节跳动-Data大数据开发岗位的面试经验。拿到了年薪70W的Offer!对于大数据的同学有一定的参考意义一共5面,从投递简历到发放Offer,整体耗时在1个月左右。面试难度中等,需要一点算法能力(基本是剑指Offer原题)。面试的重点就是简历上的项目+常用的大数据框架基础知识。【一面 1.0h】基础1.自我介绍2.项目介绍3.数据仓库分层理论与设计4.数仓模型设计(雪花模型、星星模型、星座模型)5.维度退化6.缓慢变化维度的几种处理方式,优缺原创 2022-03-21 11:59:18 · 3393 阅读 · 0 评论 -
数据仓库——数仓分层
数仓分层一.分层的作用二、ODS (opreational data store)三、DWD(data warehouse detail)四、DIM五、DWS(data warehouse service)六、DM(data market)七、APP/ADS一.分层的作用数仓分层的目的是:逐层解耦,减少重复计算,降低烟囱式开发。越到底层,越接近业务发生的记录,越到上层,越接近业务目标。具体如下:①清晰数据结构:每一个数据分层都有它的作用域和职责,在使用表的时候能更方便地定位和理解,实现业务数据解耦原创 2020-09-21 19:01:13 · 9096 阅读 · 6 评论 -
数仓建设流程
数仓建设流程一、数仓概览二、流程详解1.梳理业务流程2.垂直切分,划分主题域3.梳理指标体系4.表实体关系调研5.维度梳理4.数仓分层7.物理模型建立三、tipis注:本文转至 如何搭建一个数据仓库,仅用于个人学习,侵权删。一、数仓概览整体建设建设过程数仓建模的过程分为业务建模、领域建模、逻辑建模和物理建模,但是这 些步骤比较抽象。为了便于落地,我根据自己的经验,总结出上面的七个步骤:梳理业务流程、垂直切分(划分主题域)、指标体系梳理、表实体关系调研、维度梳理、数仓分层以及物理模型建立。每转载 2020-09-10 15:26:35 · 14801 阅读 · 3 评论 -
数据仓库与数据集市建模
数据仓库与数据集市建模一、前言二、数据仓库(data warehouse)1. 操作型数据库(OLTP) VS 分析型数据库(OLAP)2.数据仓库定义三、数据集市(data mart)四、维度建模的基本概念五、 维度建模的三种模式(模型)1.星型模式(模型)2.雪花模式(模型)3.星座模式(模型)4.三种模式对比六、更多可能的事实属性七、经典星座模型1.共享维度2. 细节/聚集事实表八、缓慢变化维度问题九、规范化数据仓库十、独立数据集市十一、两种数据仓库建模体系对比注:本文转自数据仓库与数据集市建模,仅转载 2020-09-10 12:16:18 · 1772 阅读 · 0 评论