POJ 2449: Remmarguts' Date

该博客主要介绍了如何利用A*算法解决POJ 2449问题,即在给定的有向图中寻找有向第K短路。博主在文中提到了算法的关键点,包括f[x] = g[x] + h[x]的计算,其中g[x]表示起点到节点x的距离,h[x]表示x到终点的最短距离。由于边是单向的,处理h[x]时需要考虑反向边。此外,博主还强调了当起点s等于终点t时的特殊情况,不能直接认为距离为0就是最短路。文中附有代码实现。
摘要由CSDN通过智能技术生成

题目链接:http://poj.org/problem?id=2449


题意:
给定一个有向图,

寻找有向第K短路。


算法:

我用的是A*算法。

f[x]=g[x]+h[x]。

其中g[x]是由起点到当前节点的距离

h[x]是当前节点到终点的最短距离。

本题的边是单向的,

但是在反向SPFA处理h[x]的时候要用到反向边。


trick:

s等于t的时候,不能直接认为0是最短路。


代码如下:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<sstream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<climits>
#include<cmath>
#include<queue>
#include<vector>
#include<stack>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define eps 1e-8
using namespace std;

typedef pair<int,int> PII;

int E;
const int MAXN=1010,MAXM=200010;
int to[MAXM],w[MAXM],nxt[MAXM],head[MAXN];
int d[MAXN],cnt[MAXN];
int Q[MAXN];
bool inq[MAXN];
priority_queue <pair<PII,int> > q;

void _addedge(int u, int v, int val) {
    to[E]=v;
    w[E]=val;
    nxt[E]=head[u];
    head[u]=E++;
}

void addedge(int u, int v, int val) {
    _addedge(u,v,val);
    _addedge(v,u,val);
}

void spfa(int s, int t) {
    d[t]=0;
    int front=0,rear=0;
    Q[rear++]=t;
    while(front!=rear) {
        int u=Q[front++];
        front%=MAXN;
        inq[u]=false;
        for(int i=head[u]; i!=-1; i=nxt[i]) {
            if(i&1) {
                int v=to[i];
                if(d[v]>d[u]+w[i]) {
                    d[v]=d[u]+w[i];
                    if(inq[v]) {
                        continue;
                    }
                    Q[rear++]=v;
                    rear%=MAXN;
                    inq[v]=true;
                }
            }
        }
    }
}

int astar(int s, int t, int k) {
    while(!q.empty()) {
        q.pop();
    }
    q.push(make_pair(make_pair(-d[s],0),s));
    while(!q.empty()) {
        int dist=-q.top().first.first;
        int val=q.top().first.second;
        int u=q.top().second;
        q.pop();
        cnt[u]++;
        if(cnt[u]>k) {
            continue;
        }
        if(cnt[t]==k) {
            return dist;
        }
        for(int i=head[u]; i!=-1; i=nxt[i]) {
            if(i&1) {
                continue;
            }
            int v=to[i];
            q.push(make_pair(make_pair(-(val+w[i]+d[v]),val+w[i]),v));
        }
    }
    return -1;
}

int main() {
    int n,m;
    while(scanf("%d%d",&n,&m)==2) {
        E=0;
        memset(head,-1,sizeof(head));
        memset(d,INF,sizeof(d));
        memset(cnt,0,sizeof(cnt));
        memset(inq,0,sizeof(inq));
        while(m--) {
            int u,v,val;
            scanf("%d%d%d",&u,&v,&val);
            addedge(u,v,val);
        }
        int s,t,k;
        scanf("%d%d%d",&s,&t,&k);
        spfa(s,t);
        if(s==t) {
            k++;
        }
        printf("%d\n",astar(s,t,k));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值