题目链接:http://poj.org/problem?id=1151
题目大意:
给出一些矩形,矩形之间可能重叠。
求覆盖的总面积
算法:
矩形面积并的典型应用。
我是把X坐标离散化
把线段树的每个节点代表它前面那个坐标到它这个坐标之间的线段。
然后把Y坐标用扫描线扫过,
根据当前有多少长度的X坐标被覆盖,
再乘以两个Y坐标之差。
代码如下:
#include<cstdio>
#include<iostream>
#include<sstream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<climits>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
#include<stack>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define eps 1e-8
using namespace std;
const int MAXN=3000;
double tr[MAXN<<2];
int cot[MAXN<<2];
vector<double>hash;
vector<pair<pair<double,int>,pair<double,double> > >a;
bool cmp(const pair<pair<double,int>,pair<double,double> >& a, const pair<pair<double,int>,pair<double,double> >& b)
{
return a.first.first<b.first.first;
}
void pushup(int rt, int l, int r)
{
if(cot[rt])
{
tr[rt]=hash[r+1]-hash[l];
}
else if(l==r)
{
tr[rt]=0.0;
}
else
{
tr[rt]=tr[rt<<1]+tr[rt<<1|1];
}
}
void update(double L, double R, int x, int l, int r, int rt)
{
if(L<=l&&r<=R)
{
cot[rt]+=x;
pushup(rt,l,r);
return;
}
int mid=(l+r)>>1;
if(L<=mid)
{
update(L,R,x,l,mid,rt<<1);
}
if(R>mid)
{
update(L,R,x,mid+1,r,rt<<1|1);
}
pushup(rt,l,r);
}
int main()
{
int n;
int cas=1;
while(scanf("%d",&n)==1&&n)
{
hash.clear();
a.clear();
memset(tr,0,sizeof(tr));
memset(cot,0,sizeof(cot));
for(int i=0; i<n; i++)
{
double x1,y1,x2,y2;
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
hash.push_back(x1);
hash.push_back(x2);
a.push_back(make_pair(make_pair(y1,1),make_pair(x1,x2)));
a.push_back(make_pair(make_pair(y2,-1),make_pair(x1,x2)));
}
sort(a.begin(),a.end(),cmp);
sort(hash.begin(),hash.end());
hash.erase(unique(hash.begin(),hash.end()),hash.end());
double ans=0.0;
int m=hash.size();
for(int i=0; i<2*n-1; i++)
{
int l=lower_bound(hash.begin(),hash.end(),a[i].second.first)-hash.begin();
int r=lower_bound(hash.begin(),hash.end(),a[i].second.second)-hash.begin();
if(l<r)
{
update(l,r-1,a[i].first.second,0,m-1,1);
}
ans+=(a[i+1].first.first-a[i].first.first)*(tr[1]);
}
printf("Test case #%d\nTotal explored area: %.2f\n\n",cas++,ans);//使用%.2lf会WA
}
return 0;
}