Python +OpenCV CH8:图像平滑处理

本文介绍了Python结合OpenCV进行图像平滑处理的方法,包括均值滤波、方框滤波、高斯滤波和中值滤波。均值滤波通过计算邻域像素的均值来平滑图像,方框滤波是未归一化时的均值滤波,高斯滤波则考虑了邻域像素的重要性权重,而中值滤波特别适用于消除椒盐噪声。文中通过代码示例展示了各种滤波的效果。
摘要由CSDN通过智能技术生成

1 均值滤波

1.1 基础理论

  • 目的: 图像平缓化
  • 处理结果= cv2.blur(src,核大小)
  • 任意一点的像素值,都是周围N*N个像素值的均值.
  • 核的大小需要作为参数进行指定,e.g: 核大小(3,3),(5,5),越大越模糊
    在这里插入图片描述

1.2 代码示例

示例1(正常图像)

import cv2
#读取原始图像
o=cv2.imread("image\\lenaNoise.png")
r=cv2.blur(o,(5,5))
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果
经过均值滤波后的图像很平缓
在这里插入图片描述
示例2 (对椒盐攻击后的图像进行平滑)

 import cv2
o=cv2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值