在我们日常生活中,经常会在淘宝、天猫、京东、拼多多等平台上参与商品的秒杀、抢购以及一些优惠活动,也会在节假日使用12306 手机APP抢火车票、高铁票,甚至有时候还要帮助同事、朋友为他们家小孩拉投票、刷票,这些场景都无一例外的会引起服务器流量的暴涨,导致网页无法显示、APP反应慢、功能无法正常运转,甚至会引起整个网站的崩溃。
Sentinel为了解决上述这些问题,由此应运而生。它通过为秒杀、抢购、抢票、拉票等功能提供API接口层面的流量限制,让突然暴涨而来的用户访问受到统一的管控,使用合理的流量放行规则使得用户都能正常得到服务。
另外,在微服务项目中,经常存在服务A调用服务B,服务B又调用服务C等微服务级联调用的场景,当服务C出现故障,服务B和服务A都会跟着出现故障,因为它们之间存在调用链关系;有时候调用链会很长并且很复杂,比如服务A不仅调用了服务B,还调用了服务H、服务I、服务J等等,同时服务A调用链的最长链条终端有可能是从服务C、服务D一直到服务Z,这种调用复杂的调用链条一旦出现故障,有可能直接让整个微服务体系都无法提供服务,造成的影响是致命的。
调用链架构示意图如下所示:
这种由于调用链中某一个节点出现故障而引发的级联故障,称为应用雪崩,也称为级联故障、级联失效(Cascading Failure)。
Sentinel的出现,正好可以解决这种雪崩效应引发的一系列问题。