kNN最近邻分类器

本文展示了如何利用Python实现kNN(k-Nearest Neighbor)最近邻分类器。首先定义了创建数据集的函数createDataSet,接着构建了kNNClassify函数,该函数通过计算距离并选择最近的k个邻居进行投票来确定分类。最后,通过两个测试样例展示了分类器的工作原理。
摘要由CSDN通过智能技术生成
from numpy import *
import operator
#初始化数据集
def createDataSet():
    group = array([[1.0,0.9],[1.0,1.0],[0.1,0.1],[0.0,0.1]])
    labels = ['A','A','B','B']
    return group,labels
#构建KNN分类器
def kNNClassify(newInput,dataSet,labels,k):
    numSamples = dataSet.shape[0]

    diff = tile(newInput,(numSamples,1)) - dataSet
    squaredDiff = diff ** 2
    squaredDist = sum(squaredDiff,axis = 1)
    distance = squaredDist ** 0.5

    sortedDistIndices = argsort(distance)

    classCount = {}

    for i in xrange(k):
        voteLabel = labels[sortedDistIndices[i]]

        classCount[voteLabel] = classCount.get(voteLabel,0) + 1

    maxCount = 0
    for key,value in classCount.items():
        if value > maxCount:
            maxCount = value
            maxIndex = key
            
    return maxIndex

<pre 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值