一文看懂复数卷积

复数卷积

本文是结合网上的资料和自己的理解所写,若有不对的地方,欢迎批评指正。

本文资料均来源于网络,若有侵权,请联系删除。

一、简介

如果你去网上搜”复数卷积“很难看到专门讲解复数卷积这一概念的,大概率会搜到复数神经网络

复数神经网络是出自《Deep Complex Networks》这篇论文,论文地址在下面给出。复数卷积只是复数神经网络中的一部分,但是很少有文章单独讲。

通常的网络都是实数,但是复数神经网络在某些领域具有一些优势,比如复数包含着一些相位信息等,相位信息对于一些领域可能很重要。

如果你想将你的网络改复数网络,其实是有点困难的,因为很多地方需要更改,比如loss、dropout、relu等等,都要改为复数,这个时候你也不知道改复数网络,效果会不会有提升,你可以先尝试改复数卷积,看看有没有效果,在尝试更改复数网络。

论文地址:https://arxiv.org/abs/1705.09792

二、原理

如果想要搞清楚什么是复数卷积,那么先理解一下卷积的概念

其实卷积很容易理解,我用一个例子来解释什么是卷积。

如果我们有一张5*5的图片,图片中的数字代表该位置的像素值,像素值越大颜色越亮。

在这里插入图片描述

用一个3*3的滤波器进行卷积,更通俗的意义上说,该卷积的卷积核为3。
在这里插入图片描述

有了图片和滤波器,那么该怎么卷积呢,请看下面的图片。

在这里插入图片描述

如果不了解卷积的计算过程,就可能不太清楚,这些数怎么来的,不用担心,计算过程如下
在这里插入图片描述

看到这,是不是就对卷积的整个流程很熟悉了呢。

下面介绍复数卷积。

复数的表现形式为: V r + j V i V_r+jV_i Vr+jVi,而实数和复数的不同之处在于,多了一个虚部

实数卷积有输入和卷积核且均为实数,那复数卷积肯定也有输入和卷积核且也均为复数

复数卷积的输入和卷积核可以写为:

  • 输入: V = V r + j V i V=V_r+jV_i V=Vr+jVi
  • 卷积核: K = K r + j K i K=K_r+jK_i K=Kr+jKi

它们的计算公式如下:
K ∗ V = ( K r + j K i ) ∗ ( V r + j V i ) = ( K r ∗ V r − K i ∗ V i ) + j ( K r ∗ V i + K i ∗ V r ) K*V=(K_{\mathfrak{r}}+jK_{\mathfrak{i}})*(V_{\mathfrak{r}}+jV_{\mathfrak{i}})=(K_{\mathfrak{r}}*V_{\mathfrak{r}}-K_{\mathfrak{i}}*V_{\mathfrak{i}})+j(K_{\mathfrak{r}}*V_{\mathfrak{i}}+K_{\mathfrak{i}}*V_{\mathfrak{r}}) KV=(Kr+jKi)(Vr+jVi)=(KrVrKiVi)+j(KrVi+KiVr)

注:j*j=-1

如果用一个来表示,那么可以这样表示

在这里插入图片描述

如果使用一个矩阵来表示,那么可以写成这样。
( K r + j K i ) ∗ ( V r + j V i ) = [ K r − K i K i K r ] ∗ [ V r V i ] (K_{\mathfrak{r}}+jK_{\mathfrak{i}})*(V_{\mathfrak{r}}+jV_{\mathfrak{i}})=\begin{bmatrix}\mathbf{K_r}&-\mathbf{K_i}\\\mathbf{K_i}&\mathbf{K_r}\end{bmatrix}*\begin{bmatrix}\mathbf{V_r}\\\mathbf{V_i}\end{bmatrix} (Kr+jKi)(Vr+jVi)=[KrKiKiKr][VrVi]
到这里,复数卷积已经讲完了,你看懂了吗?

如果想要本文的文件,请在公众号“冬天的李同学”回复“2023.9.3”获取。

希望本文对你有帮助。

三、代码实现

def apply_complex(fr, fi, input, dtype = torch.complex64):
    return (fr(input.real)-fi(input.imag)).type(dtype) \
            + 1j*(fr(input.imag)+fi(input.real)).type(dtype)
            
class ComplexConv2d(Module):

    def __init__(self,in_channels, out_channels, kernel_size=3, stride=1, padding = 0,
                 dilation=1, groups=1, bias=True):
        super(ComplexConv2d, self).__init__()
        self.conv_r = Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias)
        self.conv_i = Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias)
        
    def forward(self,input):    
        return apply_complex(self.conv_r, self.conv_i, input)

四、参考资料

1.https://mp.weixin.qq.com/s/y0CN-Q-gjuB-op99SvUCJA

2.https://www.bilibili.com/video/BV1my4y1J715?t=628.5

3.https://blog.csdn.net/qq_38290475/article/details/104630767?

ili.com/video/BV1my4y1J715?t=628.5

3.https://blog.csdn.net/qq_38290475/article/details/104630767?

4.https://mp.weixin.qq.com/s/TsmIZuhLPIgLD7mXl2Ms_A

### 解决因可疑活动导致请求被阻止的问题 当账户或IP地址因可疑活动被阻止时,通常是因为GitHub检测到异常行为并采取了安全措施。以下是具体的解决方案: #### 1. 验证身份 如果收到类似 `Hi ***! You've successfully authenticated` 的消息,则表明SSH密钥验证已通过[^3]。然而,如果是其他类型的访问受限问题(如OAuth登录失败),则需要进一步确认。 #### 2. 检查授权回调URL设置 对于OAuth集成GitHub登录的情况,确保在应用配置中正确设置了 **Authorization callback URL** 参数值。此参数允许自定义,并指向GitHub登录成功后的回调地址[^1]。如果该URL不匹配实际部署环境中的路径,可能会触发安全警告。 #### 3. 处理Git克隆权限问题 当执行命令 `git clone git@github.com:` 出现错误提示 `Permission denied (publickey)` 时,这通常是由于未正确配置SSH密钥所致[^2]。可以通过以下方法修复: - 确认本地机器上是否存在有效的SSH密钥文件(位于~/.ssh/目录下)。如果没有,请运行以下命令生成新的SSH密钥对: ```bash ssh-keygen -t rsa -b 4096 -C "your_email@example.com" ``` - 将公钥内容复制至GitHub账户的安全设置页面(Settings -> SSH and GPG keys -> New SSH key)。 - 测试连接是否正常: ```bash ssh -T git@github.com ``` #### 4. 更新NPM镜像源 有时依赖包管理工具也可能引发网络层面的误判。例如,在使用Node.js项目时,建议切换国内镜像加速下载速度,从而减少超时风险: ```bash npm config set registry https://registry.npm.taobao.org ``` 注意:部分旧版本库可能已被废弃,需留意官方公告以避免潜在隐患[^4]。 #### 5. 联系支持团队 最后,若上述操作均无法解决问题,可以直接联系GitHub客服说明具体情况。提供受影响邮箱地址(如hi@cursor.com)、时间范围以及具体报错日志有助于加快处理进度。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WinterWanderer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值