Mamba-ssm软件包安装

一、前言

Mamba作为一种新型的可用于深度学习的架构,以SSM(状态空间模型)为基础,在2023年被提出之后就受到了广泛关注,它集合了Transformer的注意力机制,并且克服了Transformer的缺点,即模型参数量随着输入长度的增加而呈线性增长。

本文在尝试安装Mamba时遇到了一些错误,查找资料发现其安装过程并不像一般的软件包那么容易,因此发文记录一下安装和debug过程。

二、安装过程

2.1安装环境要求

Mamba源代码地址为https://github.com/state-spaces/mamba,截至发文时最新版本为2.2.4。

按照源代码地址上安装说明,安装的环境需满足以下三个条件:
(1)须为Linux系统
(2)NVIDIA GPU,cuda大于11.6
(3)pytorch大于1.12

本文安装系统环境如下:
系统:ubuntu22.04
cuda:12.1
pytorch:2.3.0

2.2安装和Debug过程

终端输入如下安装命令:

pip install mamba-ssm

输入该命令后,会首先安装一些依赖包,然后下载GitHub源代码地址上的whl安装包,此时有可能因为GitHub连接问题而报错终止安装,报错信息为Guessing wheel URL: https://github.com/**.whl,remote end closed connection without response,如下图所示:
在这里插入图片描述
此时可以使用其他方式手动下载whl安装包,然后使用如下命令安装:

pip install **.whl

安装顺利完成,但当调用Mamba包时遇到了错误,错误信息为:ImportError, **-gnu.so:undefined symbol:_ZN3…,如下图所示:
在这里插入图片描述
通过搜索错误信息,有些网页说是由于causal_conv1d的版本与Mamba-ssm的版本不一致导致该错误,然后经过检查安装的包列表发现并没有安装casual_conv1d。

经过检查下载的Mamba安装文件,发现文件名为:mamba_ssm-2.2.4+cu12torch2.5cxx11abiFALSE-cp312-cp312-linux_x86_64,从文件名可看出该安装包适配torch2.5版本,而本文安装环境中torch为2.3,因此重新下载了适配torch2.3版本的安装包,重新安装,发现能够正常调用,至此安装结束。

Mamba安装包下载地址为:https://github.com/state-spaces/mamba/releases
在这里插入图片描述

三、总结

3.1安装技巧

回顾Mamba的安装过程,使用pip install mamba-ssm的方法并不能顺利安装,因为不会对系统环境中的torch版本进行检查进而下载适配版本的安装文件,稳妥的方法是手动下载适配的whl文件,然后进行安装。

3.2安装环境依赖

官方的Mamba需要依赖Linux系统,博主在windows系统下进行了安装实验,无法顺利安装。但可以在windows系统下安装非官方的Mamba替代包,在GitHub上可以检索到,具体效果需要读者进行实际测试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值