KNN(K-Nearest Neighbor)简介
KNNKNN是一种有监督的学习,是一种常用于分类的算法,是有成熟理论支撑的、较为简单的经典机器学习算法之一。该方法的基本思路是:如果一个待分类样本在特征空间中的K个最相似(即特征空间中K近邻)的样本中的大多数属于某一个类别,则该样本也属于这个类别,即近朱者赤近墨者黑。对当前待分类样本的分类,需要大量已知分类的样本的支持,因此KNN是一种有监督学习算法。举个例子:蓝色方格 和 红色三角 是已知分类结果的样本,求 绿色圆圈属于哪一类?当K=3时,我们发现近邻中有两个红色三角,一个蓝色三角,所以,
原创
2021-04-13 21:19:27 ·
2410 阅读 ·
0 评论