/*问题及代码
*Copyright(c)2015,烟台大学计算机学院
*All right reserved.
*文件名称:存储多项式的数据结构.cpp
*作者:李浩
*完成日期;2015年9月23日
*版本号;v1.0
*
*问题描述: 存储多项式的数据结构
多项式的通式是p n (x)=a n x n +a n?1 x n?1 +...+a 1 x+a 0 。n次多项式共有n+1项。直观地,可以定义一个数组来存储这n+1个系数。以多项式p(x)=?3.4x 10 ?9.6x 8 +7.2x 2 +x 为例,存储这个多项式的数组如下图:
可以看出,这种方案适合对某些多项式的处理。但是,在处理一些次数高但项数少的多项式时,存在浪费空间的现象,会有很多闲置的0。
可以使用如下定义的单链表结构存储多项式:链表中的每一个结点是多项式中的一项,结点的数据域包括指数和系数两部分,由指针域连接起多项式中的各项。
*输入描述:无
*程序输出:A B的原多项式,有序多项式以及两个多项式的相加
*/
#include <stdio.h>
#include <malloc.h>
#define MAX 20 //多项式最多项数
typedef struct //定义存放多项式的数组类型
{
double coef; //系数
int exp; //指数
} PolyArray;
typedef struct pnode //定义单链表结点类型,保存多项式中的一项,链表构成多项式
{
double coef; //系数
int exp; //指数
struct pnode *next;
} PolyNode;
void DispPoly(PolyNode *L) //输出多项式
{
bool first=true; //first为true表示是第一项
PolyNode *p=L->next;
while (p!=NULL)
{
if (first)
first=false;
else if (p->coef>0)
printf("+");
if (p->exp==0)
printf("%g",p->coef);
else if (p->exp==1)
printf("%gx",p->coef);
else
printf("%gx^%d",p->coef,p->exp);
p=p->next;
}
printf("\n");
}
void DestroyList(PolyNode *&L) //销毁单链表
{
PolyNode *p=L,*q=p->next;
while (q!=NULL)
{
free(p);
p=q;
q=p->next;
}
free(p);
}
void CreateListR(PolyNode *&L, PolyArray a[], int n) //尾插法建表
{
PolyNode *s,*r;
int i;
L=(PolyNode *)malloc(sizeof(PolyNode)); //创建头结点
L->next=NULL;
r=L; //r始终指向终端结点,开始时指向头结点
for (i=0; i<n; i++)
{
s=(PolyNode *)malloc(sizeof(PolyNode));//创建新结点
s->coef=a[i].coef;
s->exp=a[i].exp;
r->next=s; //将*s插入*r之后
r=s;
}
r->next=NULL; //终端结点next域置为NULL
}
void Sort(PolyNode *&head) //按exp域递减排序
{
PolyNode *p=head->next,*q,*r;
if (p!=NULL) //若原单链表中有一个或以上的数据结点
{
r=p->next; //r保存*p结点后继结点的指针
p->next=NULL; //构造只含一个数据结点的有序表
p=r;
while (p!=NULL)
{
r=p->next; //r保存*p结点后继结点的指针
q=head;
while (q->next!=NULL && q->next->exp>p->exp)
q=q->next; //在有序表中找插入*p的前驱结点*q
p->next=q->next; //将*p插入到*q之后
q->next=p;
p=r;
}
}
}
void Add(PolyNode *ha,PolyNode *hb,PolyNode *&hc) //求两有序集合的并,完成加法
{
PolyNode *pa=ha->next,*pb=hb->next,*s,*tc;
double c;
hc=(PolyNode *)malloc(sizeof(PolyNode)); //创建头结点
tc=hc;
while (pa!=NULL && pb!=NULL)
{
if (pa->exp>pb->exp)
{
s=(PolyNode *)malloc(sizeof(PolyNode)); //复制结点
s->exp=pa->exp;
s->coef=pa->coef;
tc->next=s;
tc=s;
pa=pa->next;
}
else if (pa->exp<pb->exp)
{
s=(PolyNode *)malloc(sizeof(PolyNode)); //复制结点
s->exp=pb->exp;
s->coef=pb->coef;
tc->next=s;
tc=s;
pb=pb->next;
}
else //pa->exp=pb->exp
{
c=pa->coef+pb->coef;
if (c!=0) //系数之和不为0时创建新结点
{
s=(PolyNode *)malloc(sizeof(PolyNode)); //复制结点
s->exp=pa->exp;
s->coef=c;
tc->next=s;
tc=s;
}
pa=pa->next;
pb=pb->next;
}
}
if (pb!=NULL) pa=pb; //复制余下的结点
while (pa!=NULL)
{
s=(PolyNode *)malloc(sizeof(PolyNode)); //复制结点
s->exp=pa->exp;
s->coef=pa->coef;
tc->next=s;
tc=s;
pa=pa->next;
}
tc->next=NULL;
}
int main()
{
PolyNode *ha,*hb,*hc;
PolyArray a[]= {{1.2,0},{2.5,1},{3.2,3},{-2.5,5}};
PolyArray b[]= {{-1.2,0},{2.5,1},{3.2,3},{2.5,5},{5.4,10}};
CreateListR(ha,a,4);
CreateListR(hb,b,5);
printf("原多项式A: ");
DispPoly(ha);
printf("原多项式B: ");
DispPoly(hb);
Sort(ha);
Sort(hb);
printf("有序多项式A: ");
DispPoly(ha);
printf("有序多项式B: ");
DispPoly(hb);
Add(ha,hb,hc);
printf("多项式相加: ");
DispPoly(hc);
DestroyList(ha);
DestroyList(hb);
DestroyList(hc);
return 0;
}
运行结果
知识点总结
利用单链表的方式存储次数高的多项式可节省空间,因为单链表中的每个节点代表的是多项式中的一项,而不仅仅是一个数字,所以说次数高的一项完全可以缩短为一个节点。
学习心得
对于不同的多项式存储要选择最为简练,所使用空间最少的链表去存储,这样有利于数据的保存也有利于数据的查看使用等方面。