Math——奇进偶舍 BankersRounding

本文介绍了奇进偶舍规则,一种比四舍五入更精确的数值保留方法。它在统计学中应用广泛,能降低舍入误差,尤其在大量运算时保持误差平衡。文章详细解释了奇进偶舍的规则实例和与四舍五入的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

        奇进偶舍,又称为四舍六入五成双规则、银行进位法(Banker's Rounding),是一种计数保留法,是一种数值修约规则。从统计学的角度,“奇进偶舍”比“四舍五入”更为精确:在大量运算时,因为舍入后的结果有的变大,有的变小,更使舍入后的结果误差均值趋于零。而不是像四舍五入那样逢五就进位,导致结果偏向大数,使得误差产生积累进而产生系统误差。“奇进偶舍”使测量结果受到舍入误差的影响降到最低。

        其具体要求举例如下(以保留两位小数为例):

        要求保留位数的后一位如果是4,则舍去。例如5.214保留两位小数为5.21。

        如果保留位数的后一位如果是6,则进上去。例如5.216保留两位小数为5.22。

        如果保留位数的后一位如果是5,而且5后面不再有数,要根据应看尾数“5”的前一位决定是舍去还是进入: 如果是奇数则进入,如果是偶数则舍去。例如5.215保留两位小数为5.22; 5.225保留两位小数为5.22。

        如果保留位数的后一位如果是5,而且5后面仍有数。例如5.2254保留两位小数为5.23,也就是说如果5后面还有数据,则无论奇偶都要进入。

        按照四舍六入五成双规则进行数字修约时,也应像四舍五入规则那样,一次性修约到指定的位数,不可以进行数次修约,否则得到的结果也有可能是错误的。

代码

还没写完....

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值