- 博客(215)
- 资源 (13)
- 收藏
- 关注
原创 Agentic RAG智能体:查询改写与多轮检索
这篇文章介绍一个可运行的 Agentic RAG(检索增强生成)智能体完整范例。它首先用 ChromaDB(或降级模拟)构建包含 8 条 AI 技术文档的向量知识库;随后通过“查询改写器”把用户问题自动扩展成多组检索词,执行多轮语义搜索,并在每轮后对结果进行关键词相关度与主题覆盖度打分,动态决定是否继续检索或改写查询;最终按相关性排序、去重、拼接核心与补充信息,生成带引用来源的结构化答案。
2025-10-21 19:49:26
928
原创 LangGraph React智能体 - 推理与行动的完美结合
React智能体系统是一个基于**推理+行动(Reasoning + Acting)**模式构建的AI智能体,能够自主分析复杂问题、制定执行计划、智能选择工具并迭代优化解决方案,直至生成高质量的最终答案。
2025-10-19 12:27:28
957
原创 LangGraph 智能技术顾问助手 - 带追问和知识补充
基于 **LangGraph** 的智能技术顾问助手系统,**核心目标**是模拟一个具备**主动追问**、**动态知识补充**和**多轮交互**能力的技术支持机器人。
2025-10-19 11:21:20
632
原创 LangGraph + 真实LLM 智能客服助手
这是一个集成了真实大语言模型的LangGraph高级案例,展示如何构建一个企业级的智能客服助手系统。本案例从基础的聊天机器人进阶到完整的客服工作流系统
2025-09-29 22:03:58
1066
原创 基于 LangGraph 框架实现智能研究助手示例程序
实现一个基于 LangGraph 框架的智能研究助手示例程序,主要功能是构建一个能够回答用户问题的工作流系统。
2025-09-28 21:57:32
926
原创 从“链”到“图”:LangGraph如何终结LangChain的线性智能体
LangGraph的必要性 传统LangChain在构建复杂智能体时面临多重挑战:线性执行模式无法处理分支逻辑,状态管理混乱,缺乏条件判断和并行能力。典型场景如文档分析或智能客服系统,需要多步骤、有条件分支的处理流程,LangChain难以优雅实现。LangGraph应运而生,提供图结构工作流、精确状态管理、条件分支、并行执行等核心能力,有效解决了复杂AI工作流的设计与调试难题。
2025-09-27 23:49:55
1089
原创 AI赋能金融研报自动化生成:智能体系统架构与实现
该项目通过人工智能技术,特别是大语言模型和智能体系统,实现了金融研报的自动化生成。系统采用模块化设计,具备良好的可扩展性和灵活性,能够生成高质量、图文并茂的金融研究报告。
2025-09-13 15:06:07
1216
原创 智能体赋能金融多模态报告自动化生成:技术原理与实现流程全解析
以“提高效率、标准化输出”为核心,实现**用户输入触发→多源数据采集→多维度分析→研报自动化生成→下载交付**的端到端闭环,支持金融研报的快速生成与重复利用(若当日已生成同公司研报,直接返回下载地址),同时兼顾内容的专业性(如财务比率分析、行业对比)与格式的规范性。
2025-09-13 14:43:13
1659
原创 腾讯开源Youtu-GraphRAG
**Youtu-GraphRAG** 是一个基于图Schema实现垂直统一的图增强推理范式,将GraphRAG框架精巧地集成为一个以智能体为核心的有机整体。实现了通过在图Schema上的最小化人为干预下进行跨领域的无缝迁移,为业界应用提供了泛化、鲁棒、可用的下一代GraphRAG范式。
2025-09-12 10:29:52
1523
4
原创 大模型监督微调SFT流程
在预训练阶段,模型在大规模无标注文本上学到对下一个 token 的分布表示;在下游应用中,通过微调 (fine-tuning)可使模型适应特定任务、领域或风格(如问答、代码生成、对话系统等)。
2025-09-11 15:26:11
1042
原创 大模型预训练【模型大小】和【数据量】以及【训练成本】如何预估
Scaling-Law 大模型领域的“性能-资源换算表”,让研究者先在小规模实验里“算清楚”,再决定是否大规模投入训练。
2025-09-11 13:45:40
1855
原创 大模型预训练评估指标
关于大模型的量化指标,较为普遍的有 [PPL],[BPC]等,可以简单理解为在生成结果和目标文本之间的 Cross Entropy Loss 上做了一些处理,这种方式可以用来评估模型对「语言模板」的拟合程度即给定一段话,预测后面可能出现哪些合法的、通顺的字词。
2025-09-10 23:16:22
1390
原创 LLM 时代必学分词技术:从基础概念到 BPE/WordPiece/Unigram 算法详解
定义:Tokenization是将一个整体(例如词、短语、句子、段落甚至语音、图像)分割成较小单位(被称为token)的过程。
2025-09-10 12:05:57
894
原创 DeepSeek-V3.1发布,预示下一代国产芯片即将发布,更新一小版本,跨出一大步
2025 年 8 月 21 日,DeepSeek官方升级了最新版本DeepSeek-V3.1。
2025-08-23 10:13:34
1120
原创 朋友圈文案从词穷到爆款:AI 多模态融合写文案
发微信朋友圈的时候,缺的不是图片,缺的是文字该写点啥,看起来只是随手打几个字,真动手才发现才疏学浅
2025-08-17 10:12:23
1096
原创 开发金融分析Agent,让AI写研报,你敢用吗?
能自动撰写三大类金融研报(宏观/策略、行业、公司)的智能Agent系统是一项复杂但极具价值的工程。这需要深度融合**金融专业知识、自然语言处理、数据科学、知识图谱和系统工程**。
2025-07-31 17:48:17
1032
原创 重磅开源!Kimi K2:1T 参数的代码 & Agent 双料 SOTA 模型
Kimi K2 是一款具备更强代码能力、更擅长通用 Agent 任务的 MoE 架构基础模型,总参数 1T,激活参数 32B。
2025-07-28 00:31:29
1285
原创 强化学习:从试错中变聪明的AI魔法
强化学习可以理解为一种**从试错中学习**的智能方法——就像小孩学走路:一开始跌跌撞撞(随机尝试),摔倒了会疼(负面反馈),站稳了会开心(正面反馈),慢慢就摸索出“先迈哪只脚、怎么保持平衡”的最优姿势。
2025-07-14 15:04:11
661
原创 图神经网络GNN的适用场景以及案例说明(二)
用通俗语言解释图神经网络(GNN)及其在金融投资中的应用,包含数据准备、训练推理全流程说明,并附具体案例。
2025-07-14 14:20:13
841
原创 图神经网络GNN的适用场景以及案例说明(一)
图神经网络(GNN)听起来复杂,其实可以简单理解为:专门处理“关系型数据”的神经网络。就像人通过观察朋友的行为来了解一个人,GNN通过节点之间的“连接关系”来分析每个节点的特征,特别适合处理那些元素之间有明确关联的数据。
2025-07-14 14:09:59
1048
原创 Java老兵的AI突围战:我的转型之路与两个AI Offer的启示
首先说明这里没有宣传内容,我是在写我自己过往,你要是认为我的这个实践可行,你也可以拿2个AI Offer。
2025-06-22 11:38:16
1077
原创 如何评估大语言模型效果
评估大模型微调后的效果是一个系统化的过程,需要结合**客观指标**和**主观评估**,并根据任务类型(分类、生成、回归等)选择合适的评估方法。
2025-06-07 12:15:46
2699
原创 什么是知识蒸馏?如何做模型蒸馏?结合案例说明
知识蒸馏是一种模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,使其保持高性能的同时降低计算成本。
2025-05-30 10:36:14
1626
原创 One-shot和Zero-shot的区别以及使用场景
在机器学习和自然语言处理中,**Zero-Shot** 和 **One-Shot** 是两种不同的模型推理范式,它们的核心区别在于 **是否依赖任务相关示例(示例数量)**。
2025-05-22 23:56:21
1443
原创 MCP和 AI agent 有什么区别和联系
MCP是一种开源通信协议,旨在为大型语言模型(LLM)与外部数据源、工具或服务之间建立**标准化、安全且灵活的双向连接**。它类似于“AI 的 USB-C 接口”,通过统一的协议规范,简化了 LLM 与数据库、API、文件系统、硬件设备等资源的集成。
2025-05-21 23:21:43
1689
原创 金融问答系统:如何用大语言模型打造高精度合规的金融知识引擎
本文探讨了如何开发一款基于大语言模型(LLM)的金融问答系统,以确保其输出的准确性和可信度。系统面临的主要挑战包括处理高频更新的基金交易数据和大量非结构化的金融文档,以及减少模型“幻觉”现象。
2025-05-16 23:00:17
1450
1
原创 Dify 快速构建和部署基于LLM的应用程序
如果你是第一次接触Dify,可以先创建一个简单的聊天助手,初步感觉一下,Dify在构建聊天问答类应用的过程。比如下面这个聊天助手,是基于知识库的,直接编辑一段提示词,然后在选择一个你自己的PDF 或者 word 文档,就可以实现一个简单的基于知识库的聊天助手。提示词不会写,影响不大,你写一点,可以使用自动生成提示词这个功能,帮你自动完善提示词。
2025-05-05 23:19:47
1290
原创 从召回、粗排到精排:揭秘推荐系统如何精准匹配用户需求
在推荐系统或搜索系统中,“**粗排**”和“**精排**”是排序(Ranking)流程中的两个关键阶段,主要用于从海量候选集中筛选出最符合用户需求的条目。两者的核心区别在于**计算效率与精度的权衡**。
2025-03-29 21:15:12
2318
原创 大模型全量微调和LoRA微调的区别与选择
模型微调(Fine-tuning)是指在已有预训练模型的基础上,针对特定任务或数据集进行进一步训练的过程。通过微调,可以在相对较小的数据集上取得较好的性能表现,同时减少从头开始训练模型所需的时间和计算资源。
2025-03-27 23:45:52
1478
原创 自然语言处理NLP-文本预处理
在自然语言处理(NLP)中,文本预处理是构建高效模型的关键步骤。原始文本通常包含噪声和不一致性,直接影响模型性能。通过预处理,可以提取结构化信息、减少计算复杂度,并提升模型对语义的理解能力。
2025-03-26 22:53:34
1372
1
原创 大语言模型应用提示工程Prompt Engineering
提示工程(Prompt Engineering)是指通过精心设计和优化输入提示(prompt),以引导人工智能模型(如大型语言模型)生成更符合预期的输出。
2025-03-23 20:54:53
1086
原创 机器学习怎么做特征工程
**特征工程** 就像厨师做菜前的食材处理:原始数据是“生肉和蔬菜”,特征工程是“切块、腌制、调料搭配”,目的是让机器学习模型(食客)更容易消化吸收,做出更好预测(品尝美味)。
2025-03-22 11:37:41
1175
原创 有了大模型为何还需要Agent智能体
Agent(智能体)是一种能**感知环境、自主决策、执行动作**的智能实体,当它与大语言模型(如通义千问QWen、GPT)结合时,形成一种**“增强型AI系统”**
2025-03-17 23:05:32
1344
原创 文本数据处理——最佳文本切分策略
在自然语言处理(NLP)中,数据切分(Chunking)是处理长文本的关键步骤,直接影响模型性能(如检索增强生成RAG、文本嵌入、机器阅读理解)。
2025-03-16 23:31:44
3943
原创 RAG的工作原理以及案例列举
**RAG** 是一种结合 **信息检索(Retrieval)** 和 **文本生成(Generation)** 的技术。其核心思想是:在生成答案前,先从外部知识库中检索相关数据作为上下文,再基于这些信息生成更准确、更可靠的回答。 简单来说,RAG让AI像“查阅资料后再回答问题”的人类专家一样工作。
2025-03-16 22:37:07
1226
原创 向量数据库对比以及Chroma操作
向量数据库- **设计理念**:专门设计用于存储和查询高维向量数据,支持基于相似度的搜索,例如通过余弦相似度、欧氏距离等方式来查找最接近的向量。- **应用场景**:主要用于机器学习模型输出的向量表示的高效检索,如图像识别、推荐系统、自然语言处理中的文本相似性搜索等。
2025-03-15 23:18:00
1983
机器学习案例:幸福感预测数据集
2025-02-12
机器学习算法大比拼Python版本
2025-02-10
kmip4j介绍
2014-05-10
apache-tomcat-7.0.6
2014-05-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅