73. Set Matrix Zeroes

问题描述
Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place.
Follow up:
Did you use extra space?
A straight forward solution using O(mn) space is probably a bad idea.
A simple improvement uses O(m + n) space, but still not the best solution.
Could you devise a constant space solution?

思路分析
该问题给出一个矩阵matrix,如果矩阵中有元素的值为0,则将该元素所在的行和列都设为0。但是该问题要求空间复杂度为常量。则我们可以这样思考:
就是利用矩阵的第一行和第一列来作为辅助空间使用。不用开辟新的存储空间:
1.先确定第一行和第一列是否需要清零
即,看看第一行中是否有0,记下来。也同时记下来第一列中有没有0。
2.扫描剩下的矩阵元素,如果遇到了0,就将对应的第一行和第一列上的元素赋值为0
这里不用担心会将本来第一行或第一列的1改成了0,因为这些值最后注定要成为0的,比如matrix[i][j]==0,那么matrix[i][0]处在第i行,matrix[0][j]处于第j列,最后都要设置为0的。
3.根据第一行和第一列的信息,已经可以将剩下的矩阵元素赋值为结果所需的值了即,拿第一行为例,如果扫描到一个0,就将这一列都清0.
4.根据1中确定的状态,处理第一行和第一列。
如果最开始得到的第一行中有0的话,就整行清零。同理对列进行处理。
代码展示

class Solution {
public:
    void setZeroes(vector<vector<int>>& matrix) {
        int row = matrix.size();  
        if(row == 0) return;  
        int col = matrix[0].size();  
        if(col == 0) return;  

        bool firstrowiszero = false;  
        bool firstcoliszero = false;  
        for(int j = 0; j < col; ++j)  
            if(matrix[0][j] == 0){  
                firstrowiszero = true;  
                break;  
            }  
        for(int i = 0; i < row; ++i)  
            if(matrix[i][0] == 0){  
                firstcoliszero = true;  
                break;  
            }  

        for(int i = 1; i < row; ++i)  
            for(int j = 1; j < col; ++j){  
                if(matrix[i][j] == 0) {  
                    matrix[i][0] = 0;  
                    matrix[0][j] = 0;  
                }  
            }  

        for(int i = 1; i < row; ++i)  
            for(int j = 1; j < col; ++j)  
                if(matrix[i][0] == 0 || matrix[0][j] == 0)  
                    matrix[i][j] = 0;  

        if(firstrowiszero){  
            for(int j = 0; j < col; ++j)  
                matrix[0][j] = 0;  
        }  
        if(firstcoliszero){  
            for(int i = 0; i < row; ++i)  
                matrix[i][0] = 0;  
        }  
    }
};

运行截图
这里写图片描述
这里写图片描述

import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ["SimHei"] # 单使用会使负号显示错误 plt.rcParams['axes.unicode_minus'] = False # 把负号正常显示 # 读取北京房价数据 path = 'data.txt' data = pd.read_csv(path, header=None, names=['房子面积', '房子价格']) print(data.head(10)) print(data.describe()) # 绘制散点图 data.plot(kind='scatter', x='房子面积', y='房子价格') plt.show() def computeCost(X, y, theta): inner = np.power(((X * theta.T) - y), 2) return np.sum(inner) / (2 * len(X)) data.insert(0, 'Ones', 1) cols = data.shape[1] X = data.iloc[:,0:cols-1]#X是所有行,去掉最后一列 y = data.iloc[:,cols-1:cols]#X是所有行,最后一列 print(X.head()) print(y.head()) X = np.matrix(X.values) y = np.matrix(y.values) theta = np.matrix(np.array([0,0])) print(theta) print(X.shape, theta.shape, y.shape) def gradientDescent(X, y, theta, alpha, iters): temp = np.matrix(np.zeros(theta.shape)) parameters = int(theta.ravel().shape[1]) cost = np.zeros(iters) for i in range(iters): error = (X * theta.T) - y for j in range(parameters): term = np.multiply(error, X[:, j]) temp[0, j] = theta[0, j] - ((alpha / len(X)) * np.sum(term)) theta = temp cost[i] = computeCost(X, y, theta) return theta, cost alpha = 0.01 iters = 1000 g, cost = gradientDescent(X, y, theta, alpha, iters) print(g) print(computeCost(X, y, g)) x = np.linspace(data.Population.min(), data.Population.max(), 100) f = g[0, 0] + (g[0, 1] * x) fig, ax = plt.subplots(figsize=(12,8)) ax.plot(x, f, 'r', label='Prediction') ax.scatter(data.Population, data.Profit, label='Traning Data') ax.legend(loc=2) ax.set_xlabel('房子面积') ax.set_ylabel('房子价格') ax.set_title('北京房价拟合曲线图') plt.show()
最新发布
06-04
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值