JZOJ5373. 【NOIP2017提高A组模拟9.17】信仰是为了虚无之人

这里写图片描述

题解

我们知道异或是满足前缀和的。
那么,一个区间的异或和就可以变为两个数的异或值。
si=a1 xor a2 xor … xor ai
al xor al+1 xor … xor ar = sl1 xor sr

我们就用并采集维护,
gi 表示i到其的祖先的异或和。

我们就依照某一段的异或和来维护并采集。
如果l-1,r在同一个集合里面,就判断他们的异或和是否为k,
如果不在同一个集合里面,那就将它们合并,
边权就使其满足异或和为k。
为了方便求出最后的答案,我们就将编号小的放在上面。

如果一个集合的祖先确定了,你们整个并采集里面的元素的数也就确定了,
因为要字典序最小,就使所以的祖先为0。

code

#include<queue>
#include<cstdio>
#include<iostream>
#include<algorithm>
#include <cstring>
#include <string.h>
#include <cmath>
#include <math.h>
#define ll long long
#define N 200003
#define db double
#define P putchar
#define G getchar
#define mo 1000000007
using namespace std;
char ch;
void read(int &n)
{
    n=0;
    ch=G();
    while((ch<'0' || ch>'9') && ch!='-')ch=G();
    ll w=1;
    if(ch=='-')w=-1,ch=G();
    while('0'<=ch && ch<='9')n=(n<<3)+(n<<1)+ch-'0',ch=G();
    n*=w;
}

int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}

void write(int x)
{
     if(x>9) write(x/10);
     P(x%10+'0');
}

int f[N],g[N],sum[N];
int n,m,czy,last;
int l,r,k,f1,f2;

int get(int x)
{
    if(f[x]!=x)
    {
        int t=get(f[x]);
        g[x]^=g[f[x]];
        f[x]=t;
    }
    return f[x];
}

int main()
{
    freopen("sanae.in","r",stdin);
    freopen("sanae.out","w",stdout);
    read(n);read(m);read(czy);
    for(int i=1;i<=n;i++)
        f[i]=i;
    for(int i=1;i<=m;i++)
    {
        read(l);read(r);read(k);
        l=l^(last*czy);
        r=r^(last*czy);
        k=k^(last*czy);

        f1=get(l-1);
        f2=get(r);

        if(f1==f2)
        {
            if((g[l-1]^g[r])!=k)last=0;else last=1;
        }
        else
        {
            last=1;
            if(f2<f1)swap(f1,f2);
            f[f2]=f1;g[f2]^=k^g[l-1]^g[r];
        }
        write(last),P('\n');
    }

    for(int i=1;i<=n;i++)
        sum[i]=f[i]==i?sum[i-1]:sum[get(i)]^g[i];
    for(int i=1;i<=n;i++)
        write(sum[i]^sum[i-1]),P('\n');
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值