了解协程调用过程中消耗的内存和时间。
在这里性能分析(profiling)是度量程序执行效果的非功能参数。
为了实现性能分析,Python标准库在PEP 454种概述tracemalloc模块。
tracemalloc模块是在CPython解释器中引入,因为需要一个用于Python的内存监控API。
CPython中的内存管理由两个API处理:PyMem_Malloc和pymalloc。这两个分配器(allocator)并不能很好的与通用内存调试器(如Valgrind)配合使用,Valgrind可以提供内存分配的C回溯信息(traceback),这样可能导致回溯信息在CPython的C API中就结束了。
因此,我们需要使用tracemalloc模块和一个带有装饰器的Profiler类来打印协程的内存使用情况
import asyncio
import logging
import tracemalloc
import functools
class Profiler:
def __init__(self):
self.stats = {}
self.logger = logging.getLogger(__name__)
def profile_memory_usage(self, f):
@functools.wraps(f)
async def wrapper(*args, **kwargs):