对asyncio应用程序进行简单性能分析

本文探讨了如何使用Python的tracemalloc模块对asyncio应用程序进行性能分析,特别是关注协程的内存消耗和执行时间。tracemalloc是Python CPython解释器中的内存监控API,用于弥补CPython内存管理器与通用内存调试器如Valgrind配合的不足。通过Profiler类和装饰器,可以收集并打印协程的内存使用统计信息。
摘要由CSDN通过智能技术生成

了解协程调用过程中消耗的内存和时间。

在这里性能分析(profiling)是度量程序执行效果的非功能参数。

为了实现性能分析,Python标准库在PEP 454种概述tracemalloc模块。

tracemalloc模块是在CPython解释器中引入,因为需要一个用于Python的内存监控API。

CPython中的内存管理由两个API处理:PyMem_Malloc和pymalloc。这两个分配器(allocator)并不能很好的与通用内存调试器(如Valgrind)配合使用,Valgrind可以提供内存分配的C回溯信息(traceback),这样可能导致回溯信息在CPython的C API中就结束了。

因此,我们需要使用tracemalloc模块和一个带有装饰器的Profiler类来打印协程的内存使用情况

import asyncio
import logging
import tracemalloc
import functools


class Profiler:
    def __init__(self):
        self.stats = {}
        self.logger = logging.getLogger(__name__)

    def profile_memory_usage(self, f):
        @functools.wraps(f)
        async def wrapper(*args, **kwargs):
   
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值