Linux树莓派综合应用---刷机、换源、配置网络、登录、树莓派和windows的文件共享

树莓派刷机

3b/3b+、4b的刷机镜像关注微信公众号:Allen Iverson,发送“镜像”两字获取资料

登录树莓派及换源

串口登录ssh登录xrdp登录更新vim
扩容换源

串口登录(用的Mobaxtern)

1.把串口ch340 ,Tx -> 树莓派Rx,串口的Rx -> 树莓派Tx

2.先打开Mobaxtern软件进入Session->serial->选择对应的com口,配置对于的波特率

3.完成2的配置后,在开始给树莓派上电,等到看到代码出现,即登录成功

 

ssh登录

1.先用到串口登录进终端

2.让树莓派连接到网络

 

更新vim/扩容

1.sudo apt-get install vim(先换源)

2.sudo raspi-config -----》advances options --》 Expand Filesystem

3.df -h 查看树莓派内存大小

 

树莓派和windows文件共享

1.FileZila

 2.Mobaxtern自带的

 

树莓机器人(Raspberry Pi)是一种小型、开源的单板电脑,常用于教育、物联网原型开发。如果想让树莓派检测图片中是否有红灯,通常会通过计算机视觉技术来实现,步骤如下: 1. **安装库**:首先需要在树莓派上安装必要的图像处理库,如OpenCV或PiCamera库,它们提供读取摄像头处理图像的功能。 2. **摄像头采集**:使用`picamera`或`cv2.VideoCapture`等模块获取摄像头实时拍摄的视频流或静态图片。 3. **颜色识别**:利用色彩空间转换(比如BGR到HSV),设置红色区域的阈值。然后对图片进行颜色分析,找出接近红色的部分。 4. **边缘检测或模板匹配**:通过边缘检测算法(如Canny边框检测)或预先存储的红灯模板匹配,进一步确认是否检测到了真正的红灯。 5. **决策逻辑**:如果找到符合条件的红灯区域,就判断为红灯;反之则不是。 ```python import cv2 import numpy as np # 加载预处理的红灯模板 red_template = cv2.imread('red_light_template.jpg', cv2.IMREAD_GRAYSCALE) def detect_red_light(image_path): img = cv2.imread(image_path) # 图像预处理... gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 使用模板匹配 result = cv2.matchTemplate(gray_img, red_template, cv2.TM_CCOEFF_NORMED) loc = np.where(result >= threshold) # 查找相似区域 if len(loc[0]) > 0: return True # 红灯被检测到 else: return False image_path = 'path_to_your_image.jpg' is_red_light = detect_red_light(image_path) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

No Iverson

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值