👋 欢迎关注我的生信学习专栏~ 如果觉得文章有帮助,别忘了点赞、关注、评论,一起学习
如果说 AlphaFold 解决了蛋白质结构预测的问题,那么虚拟细胞(Virtual Cell)正在挑战整个生命系统模拟的边界。近期 Cell 和 Cell Research 连发重磅文献,为我们描绘了AI驱动下的细胞建模新图景。
1. 虚拟细胞研究的背景与意义
细胞是生命的基本单位,但对其功能与行为的精确建模一直是生物学与系统建模的最大挑战之一。传统的细胞模拟方法往往基于显式规则、微分方程或代谢网络,仅能覆盖细胞功能的一部分。而近年来,随着人工智能特别是大模型(foundation models)在蛋白质、分子建模领域的突破,人们开始思考:我们是否可以构建一个能够“理解并预测细胞”的 AI 系统?
这一愿景被称为 AI Virtual Cell(AIVC) —— 一个多模态、多尺度的神经网络系统,可以模拟细胞乃至组织水平的行为与响应,从而辅助科研预测、药物筛选甚至个体化诊断。
2. 解读 Cell Research, 2025 的评论性文章:Grow AI virtual cells
这篇由 Guo 等人在 Cell Research 上发表的编辑部评论性文章提出了构建 AIVC 的系统思路框架,包括细胞建模的发展演化、数据支柱构建以及 AI 闭环学习系统。
2.1 虚拟细胞的发展演化:从规则系统到神经网络模型
文章指出,尽管早期已有如 Mycoplasma genitalium、E. coli 的全细胞建模尝试,但由于数据维度限制与模型泛化能力差,始终难以模拟真实细胞行为。而随着 Bunne C. 等人在 Cell, 2024 提出“AIVC”的概念——结合 AI 与多模态组学进行大规模建模,标志着虚拟细胞进入可实用化、可演进的新阶段。
👉 这一篇Cell综述文章正是本篇评论的基础,后文将深入解读。
2.2 构建虚拟细胞的三大数据支柱(Three Data Pillars)
- A priori knowledge:数据库与文献中已知的生物学知识(如KEGG、Reactome、GO)
- Static architecture:细胞静态结构数据,如Cryo-EM、空间蛋白组、超分辨成像等
- Dynamic states:扰动组学(perturbation omics)数据,捕捉细胞在动态环境下的状态转化
作者强调,动态扰动数据是三者中最关键的一环,对于训练 AI 模型具备因果预测与泛化能力至关重要。
2.3 闭环主动学习系统(Closed-loop Active Learning Systems)
这是该文的最大亮点之一。作者提出类比自动化化学实验室,未来虚拟细胞应具备如下能力:
- AI预测数据空白 → 自动设计实验扰动 → 实验平台执行 → 获取新数据 → 反馈AI再训练
这形成了一个“预测—验证—再预测”的实验闭环机制,不仅能加速模型学习,也能优化实验资源配置。
3. Cell Research 文献的总结与展望
这篇评论文章以系统化的形式提出了构建 AIVC 的概念图谱,不仅指出当前需要的数据类型、实验策略,也提出从酵母等模型系统入手、再扩展至人类癌症细胞系的逐步实施建议。
其核心贡献在于:为虚拟细胞的发展提出了清晰的阶段模型、技术依赖与实验协同方式。
4. 进一步阅读基础文献:Bunne C. et al., Cell, 2024
作为 Cell Research 评论的直接基础,Bunne C. 团队在 Cell 发表的这篇 30+ 页的重磅 Perspective,系统提出了 AIVC(AI虚拟细胞) 的完整架构。阅读这篇文章,对于深入理解虚拟细胞的设计理念、技术路径和应用前景至关重要。
5. Bunne C. et al., Cell, 2024 的研究背景
作者指出,当前生物系统的复杂性远超传统模型可容纳的范围:
- 多尺度交互(分子-细胞-组织)
- 多模态数据(RNA-seq, 影像, 蛋白互作)
- 高度非线性的调控网络
而 AI 模型,特别是大型预训练神经网络,已经在蛋白质预测、分子生成中表现出泛化能力。现在是将AI用于细胞建模的黄金时期。
6. 深度解读文献中的 Figure 和 BOX
Figure 1 解读:AIVC 的能力框架(Capabilities of the AIVC)
Figure 1 分为三部分:
A)Universal Representation(UR):统一细胞状态表征
- AIVC 学习得到的 UR 能整合来自不同物种、不同技术平台、不同尺度的数据(如scRNA、影像、蛋白互作等),用于跨模态分析;
- 可实现状态泛化(generalization to unseen cell states),包括疾病状态、干预状态;
- 每种细胞状态可由不同数据生成,但共享相同UR空间 —— 为 AI 模型提供稳定输入。
这是 AIVC 成为“细胞参考地图”的基础。
B)动态模拟能力(模拟细胞行为)
- 可预测自然或干预下的细胞状态变化,如分化、突变、药物处理;
- 支持in silico实验,辅助科研与新假设生成;
- 能从时间或干预轨迹中学习转化规则(迁移路径)。
可与 RNA velocity 等轨迹分析方法对接,补足实验追踪困难。
C)三层交互机制(多层次交互与开放使用)
- 科研者层面:需开放授权、模型透明;
- 科研共同体层面:需建立评估体系和模型共享机制;
- 社会层面:需考虑伦理、安全与隐私(如患者数据模拟)。
强调开放科学和“以人为本”的技术转化原则。
Figure 2 解读:AIVC的结构设计与模拟能力(System Architecture)
🔬 模拟范围覆盖三大尺度:
尺度 | 建模内容 | 技术基础 |
---|---|---|
分子层 | DNA/RNA/蛋白、代谢物序列与结构 | LLM(语言模型)、图神经网络、原子级建模 |
细胞层 | 单细胞组学(scRNA, ATAC, CyTOF)、成像数据 | Transformer, CNN, Autoencoder |
多细胞层 | 空间组学、组织图谱、TME互动网络 | GNN, Vision Transformer, 3D空间映射 |
Virtual Instruments(VIs):AIVC操作的“实验工具”
类型 | 功能 | 举例 |
---|---|---|
Decoder VIs | 解码 UR → 可视输出 | 输出细胞类型、状态图像 |
Manipulator VIs | 干预 UR → 新 UR | 模拟药物、突变、分化等状态转变 |
类比于实验中的“观察器 + 干预器”,支持可控模拟。
Box 1 解读:构建 AIVC 面临的六大核心挑战(Grand Challenges)
- 能力定义与评估框架:需定义什么是“有效的虚拟细胞”,设计通用而可量化的 benchmark;
- 一致性与泛化能力:不同物种、不同模态、不同尺度的建模需一致性;
- 可解释性与可操作性平衡:需兼顾“可预测”与“可理解”,避免成为黑箱;
- 协作式建模平台:开放、多中心、标准化,是确保长期可持续演进的基础;
- 伦理与可及性:需防止种族/性别偏倚,确保隐私安全、资源公平;
- 数据优先采集策略:明确哪些类型的数据最有利于支持泛化建模。
Box 1 为后续推动大型AIVC计划(如HCA的延伸)制定了战略蓝图。
Box 2 解读:AIVC的典型应用场景(Vignettes)
应用方向 | 场景举例 | 解读要点 |
---|---|---|
药物筛选与细胞治疗设计 | 模拟患者特异性表型,反向推断最优治疗干预(如 β细胞重建) | 将 phenotype-based screening 从实验转向虚拟环境 |
肿瘤空间异质性解析 | 虚拟再现TME,识别免疫逃逸通路、空间耐药机制 | 可泛化分析不同癌种间的共性空间机制 |
数字孪生诊断 | 生成患者专属虚拟细胞,用于监控健康状况、干预推荐 | 涉及 liquid biopsy、时序更新、数据隐私保护 |
科学发现与假说生成 | 主动生成可实验验证的高信息量假说,推荐实验设计路径 | 强调“科学问题驱动”的模拟实验系统 |
五、Box 3 解读:AIVC涉及的主要AI模型技术框架
AI框架 | 应用类型 | 生物示例 |
---|---|---|
Transformer | 序列建模(RNA、蛋白) | RNA相互作用预测、基因表达建模 |
CNN / ViT | 图像处理 | 细胞成像、组织结构识别 |
Diffusion Model | 状态轨迹建模 | 模拟细胞状态变化,如干细胞分化 |
GNN | 空间图结构建模 | TME中细胞邻接关系推断、细胞通信建模 |
Bunne et al., Cell, 2024 不仅提出了AIVC的愿景蓝图,更系统化地构建了“从模型结构 → AI引擎 → 数据需求 → 应用场景”的技术路线图,是后续推动 AI-细胞系统模拟工作的核心指南文献。
7. 总结:两篇文献的对话与虚拟细胞的未来价值
对应关系 | Cell Research, 2025 | Cell, 2024 |
---|---|---|
文献类型 | 评论文章 | 系统综述(Perspective) |
核心定位 | 提出“三大数据支柱 + 闭环系统”的建构策略 | 提出“UR + VI 模型体系”的完整架构与愿景 |
相互关系 | 实施建议与优先细胞建模对象推荐 | 总体蓝图与平台化协作路径 |
未来的虚拟细胞(AIVC)将不仅是研究工具,更可能成为精准治疗的“模拟引擎”、合成生物设计平台、甚至成为生物系统的“数字孪生”。
👋 欢迎关注我的生信学习专栏~ 如果觉得文章有帮助,别忘了点赞、关注、评论,一起学习