Opencv Haar特征的鼻子分类器性能测试

本文介绍了在ARM11平台上使用OpenCV的Haar特征进行鼻子分类器性能测试的过程。讨论了参数如scale_factor和min_neighbors对检测速度的影响,并提到检测面积与函数执行速度的线性关系。实验结果显示,通过调整scale_factor,时间从250+ms缩短到约220ms,但进一步优化效果不佳,推测存在内部保护机制限制了步长的调整,需要深入研究haar函数的工作原理。
摘要由CSDN通过智能技术生成

今天要完成haar特征的鼻子分类器的不同参数设置,在ARM11上运行的性能测试。最近情绪不稳,可能有不太对的地方,仅供参考吧。

一、opencv 的haar分类器

noses = cvHaarDetectObjects( 

  pGray,            /* the source image, with the estimated location defined */
  cascade_n,      /* the eye classifier */     
        noseStorage,        /* memory buffer */
1.5,3, CV_HAAR_DO_CANNY_PRUNING,     /* tune for your app */
        cvSize(36,30),  /* minimum detection scale */
cvSize(48,45)
);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值