小船过河问题

本文通过POJ1700题目介绍了小船过河问题,这是一个典型的贪心算法实例。问题核心在于每次运送耗时最长的两人以达到最短总时间。文章提供了算法实现,通过比较两种运输方案来确定最短时间,并给出了C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/*
小船过河问题
POJ1700是一道经典的贪心算法例题。题目大意是只有一艘船,能乘2人,船的运行
速度为2人中较慢一人的速度,过去后还需一个人把船划回来,问把n个人运到对岸,
最少需要多久。先将所有人过河所需的时间按照升序排序,我们考虑把单独过河所需
要时间最多的两个旅行者送到对岸去,有两种方式:
1.最快的和次快的过河,然后最快的将船划回来;次慢的和最慢的过河,然后次快的将船划回来,
所需时间为:t[0]+2*t[1]+t[n-1];
2.最快的和最慢的过河,然后最快的将船划回来,最快的和次慢的过河,然后最快的将船划回来,
所需时间为:2*t[0]+t[n-2]+t[n-1]。
算一下就知道,除此之外的其它情况用的时间一定更多。每次都运送耗时最长的两人而不影响其它人,
问题具有贪心子结构的性质。
*/

//核心是每次把排在最后的两个人运到河对岸//  
//之所以运后两个人目的  
//1.不用考虑前面数组中元素的改变,这里情况相当简单了。。两遭一共要四个单程
//2.这样确实能做到用时最短。排在最后的两个时间只取其一(相当于屏蔽了次长的时间),剩下运输的让用时最短的补齐   
//否则的话,不能屏蔽 一趟长时间的运输

//两种运输情况选择用时最少的一种//

//这里的问题之所以简单,不用考虑数组元素的变化,若每次运输三个人的话,问题就复杂了。
//因为第三快的人将会在每次的运输中被踢出,这样数组在每次运输后都会改变。

#include <iostream>
#include <algorithm>
using namespace std;

bool cmp(int const &x, int const &am
<think>好的,我现在需要解决用户提出的关于如何用贪心算法解决小船过河问题。首先,我得回顾一下用户提供的引用内容,确保理解问题的具体要求。根据引用[1]和[2],问题描述是N个人过河,船每次只能载两个人,过河时间由较慢的人决定,船返回需要一人划回,要求找到最快的总时间。而引用[3]提到另一个类似的问题,但涉及体重和船的最大载重,求最少船只数。不过用户的问题明显是关于时间优化的小船过河,所以重点在引用1和2。 首先,我需要明确问题的核心。每次过河需要两个人,回来需要一个人,因此需要多次往返。目标是让总时间最短。根据引用[2],解决方案是贪心算法,先将时间排序,然后采用两种策略选择最优的方式送最慢的两个人过河。这时候,我需要理清楚这两种策略的具体情况和如何选择。 具体来说,当处理剩下的最慢两个人时,有两种可能的方式。第一种是让最快和次快的人先过去,最快回来,然后最慢和次慢过去,次快回来。这样时间计算为t[0] + 2*t[1] + t[n-1]。另一种方式可能是让最快的人带最慢的人过去,然后最快回来,再带次慢的人过去,再回来。这种情况下时间是2*t[0] + t[n-1] + t[n-2]。这时候需要比较这两种情况的时间,选择较小的那个。这应该是贪心策略的关键点。 接下来,我需要考虑如何将这些步骤转化为算法步骤。首先排序数组,然后循环处理最慢的两个人,直到所有人都过河。在每一步中,比较两种策略的时间,选择较小的累加到总时间中。如果最后剩下一个人或两个人,直接加上他们的时间。 然后,我需要验证这个算法的正确性。例如,当人数较多时,每次处理两个最慢的人,能确保总体时间最优。这可能需要数学归纳法或反证法来证明贪心选择的有效性。同时,需要考虑边界情况,比如当n=1、2、3时的情况,确保算法覆盖这些情况。 另外,用户提供的引用中有一个Python代码示例,但那是快速排序的例子。我需要为小船过河问题编写相应的代码。代码的大体结构应该是这样的:排序时间数组,初始化总时间,然后循环处理最大的两个元素,根据策略选择时间,直到处理完所有人。最后处理剩下的1或2人。 还需要注意,当n为奇数时,最后可能剩下三个人,这时候可能需要特殊处理。或者,在循环中处理到只剩三个人的时候,直接应用另一种策略。例如,当剩下三人时,最快的带最慢的过去,回来,再带次慢的过去,总时间为t[0] + t[1] + t[2]。或者可能需要分情况讨论。 此外,引用[3]的问题虽然不同,但可能给用户带来混淆。需要明确用户的问题是关于时间的还是船只数的,但根据用户的问题描述,是前者,所以可以暂时忽略引用3的内容,除非用户有后续问题。 现在,我需要将这些思路整理成一个清晰的步骤说明,并编写相应的Python代码。同时,生成相关问题,帮助用户深入理解问题,比如关于算法的时间复杂度、正确性证明、不同情况的处理等。</think>### 贪心算法解决小船过河问题 **问题分析** 小船过河问题的核心在于通过贪心策略选择最优的两人组合,使得总过河时间最短。每次过河后必须有一人返回,因此需要合理安排往返顺序,减少时间浪费[^1][^2]。 --- ### 分步解决方案 1. **排序时间** 将所有人过河所需时间按升序排序,得到数组 $t = [t_0, t_1, ..., t_{n-1}]$,其中 $t_0$ 最快,$t_{n-1}$ 最慢。 2. **贪心策略选择** - **策略1**:用最快和次快的人运送最慢的两人 总时间为 $t_0 + 2t_1 + t_{n-1}$ - **策略2**:用最快的人单独运送最慢的两人 总时间为 $2t_0 + t_{n-1} + t_{n-2}$ - **选择更优策略**:比较两种策略的时间,取较小值累加到总时间中。 3. **递归/循环处理剩余人员** 重复步骤2,每次处理剩下的最慢两人,直到剩余人数 ≤ 2。 4. **处理剩余人员** - 若剩余1人:时间加 $t_0$ - 若剩余2人:时间加 $t_1$ --- ### Python代码实现 ```python def min_time_cross_river(times): times.sort() total_time = 0 n = len(times) while n > 3: # 比较两种策略的时间,选择更优的 strategy1 = times[0] + 2*times[1] + times[-1] strategy2 = 2*times[0] + times[-1] + times[-2] total_time += min(strategy1, strategy2) n -= 2 # 处理完最慢的两人 times = times[:-2] # 移除已过河的两人 # 处理剩余人员 if n == 3: total_time += times[0] + times[1] + times[2] elif n == 2: total_time += times[1] elif n == 1: total_time += times[0] return total_time # 示例 times = [1, 2, 5, 10] print(min_time_cross_river(times)) # 输出:17 ``` --- ### 正确性证明 贪心策略的关键在于:**每次运送最慢两人时,选择局部最优解**。通过数学归纳法可以证明,局部最优解的累加最终得到全局最优解。 --- ### 时间复杂度 排序时间 $O(n \log n)$,循环处理时间 $O(n)$,总体时间复杂度为 $O(n \log n)$。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值