四阶龙格-库塔法求解常微分方程的初值问题

算法原理和程序框图

龙格—库塔法是一种求其准确解y(x)在一系列点xi处y(xi)的近似值yi的方法,yi称为数值解。经典的四阶龙格库塔法方程如下:

y'=f(t,y),y(t0)=y0输出按如下求解yn+1=yn+h(k1+2k2+3k3+4k4)/6其中                       k1=f(tn,yn)

k2=f(tn+h/2,yn+hk1/2)

k3=f(tn+h/2,yn+hk2/2)

k4=f(tn+h,yn+hk3)

4.2程序使用说明

本程序单独编写了一阶初值问题单独求解和高阶常微分方程的求解问题。常微分方程的阶数,x的上下限和步长直接输入就好。常微分方程则在系统提示input后再输入,并且按照y(1,1)=y,y(2,1)=y’,y(3,1)=y’’的格式输入,然后输入初始条件f(x),f’(x),f’’(x)等计算结果。最后求得所要的函数值。

4.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值