文本相似度之Levenshtein算法

levenshtein() 函数返回两个字符串之间的 Levenshtein 距离。

 

Levenshtein算法是计算两个字符串之间的最小编辑距离的算法,所谓的最小编辑距离就是把字符串A通过添加,删除,替换字符的方式转变成B所需要的最少步骤。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念,所以叫做Levenshtein算法。

 

Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

 

Levenshtein算法的流程:

1:计算strA的长度n,strB的长度m

2:如果n=0,则最小编辑距离是m,m=0,则最小编辑距离是n

3:构造一个 (m+1)*(n+1)的矩阵Arr,并初始化矩阵的第一行和第一列分别为0-n,0-m

4:两重循环,遍历strA,在此基础上遍历strB,如果strA[i]=strB[j],那么cost=0,否则cost=1,判断Arr[j-1][i]+1,Arr[j][i-1]+1,Arr[j-1][i-1]+cost的最小值,将最小值赋值给Arr[j][i]。

5:循环结束后,矩阵的最后一个元素就是最小编辑距离。



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值