matlab特征值分解法求多自由度系统的固有频率和主振型

本文介绍了多自由度系统的固有频率和主振型的计算方法。通过建立系统的无阻尼自由振动方程,利用特征值分解求解系统的固有频率及对应的主振型,并给出了具体的MATLAB程序实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多自由度系统的固有频率和主振型可根据系统的无阻尼自由振动方程得到。

MX˝+KX=0
设解为X=Ae^iωnt
可推出:
主振型方程K-ωn^2MA=0
M^(-1)*K-ωn^2EA=0
特征方程|M^(-1)*K-ωn^2E|=0 ,此时A有非零解。
对矩阵M^(-1)*K特征值分解,即得系统的特征值ωn^2,开方后得到固有频率
将固有频率ωnr带入主振型方程(K-ωn^2MA=0,可得非零向量Ar,即特征向量。对一个振动系统,一个特征向量描绘了系统振动位移的一种形态,称为主振型(主模态)。特征向量也可由M^(-1)*K特征值分解得到。
某阶主振型各个坐标幅值的大小取决于系统的初始条件。
 
常用的特征值分解法求主振型的程序
 
|——>k1——>m1——>k2——>m2
 
m1=1;m2=9;k1=4;k2=2;
M=[m1,0;0,m2];K=[k1+k2,-k2;-k2,k2]; %二阶参数矩阵
[eig_vec,eig_val] = eig(inv(M)*K);
[omeg,w_order]    = sort(sqrt(diag(eig_val)));  
 %频率
mode_vec = eig_vec(:,w_order); 
%振型
T=2.*pi./omeg;    
%周期
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值