记flume部署过程中遇到的问题以及解决方法(持续更新)

项目需求是将线上服务器生成的日志信息实时导入kafka,采用agent和collector分层传输,app的数据通过thrift传给agent,agent通过avro sink将数据发给collector,collector将数据汇集后,发送给kafka,拓扑结构如下:




现将调试过程中遇到的问题以及解决方法记录如下:

1、 [ERROR - org.apache.thrift.server.AbstractNonblockingServer$FrameBuffer.invoke(AbstractNonblockingServer.java:484)] Unexpected throwable while invoking!

java.lang.OutOfMemoryError: Java heap space

原因:flume启动时的默认最大的堆内存大小是20M,实际环境中数据量较大时,很容易出现OOM问题,在flume的基础配置文件conf下的flume-env.sh中添加

export JAVA_OPTS="-Xms2048m -Xmx2048m -Xss256k -Xmn1g -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:-UseGCOverheadLimit"

并且在flume启动脚本flume-ng中,修改JAVA_OPTS="-Xmx20m"JAVA_OPTS="-Xmx2048m"

此处我们将堆内存的阈值跳转到了2G,实际生产环境中可以根据具体的硬件情况作出调整


2、  [ERROR - org.apache.thrift.server.TThreadedSelectorServer$SelectorThread.run(TThreadedSelectorServer.java:544)] run() exiting due to uncaught error
  java.lang.OutOfMemoryError: unable to create new native thread

  原因:如果App给flume的thrift source发送数据时,采用短连接,会无限地创建线程,使用命令 pstree 时发现java的线程数随着发送数据量的增长在不停增长,最终达到了65500多个,超过了linux系统对线程的限制,解决方法是在thrift source配置项中增加一个线程数的限制。

agent.sources.r1.threads = 50

重新启动agent发现java的线程数达到70多就不再增长了


3、 Caused by: org.apache.flume.ChannelException: Put queue for MemoryTransaction of capacity 100 full, consider committing more frequently, increasing capacity or increasing thread count

原因:这是memory channel被占满导致的错误,memory channel默认最多只缓存100条数据,在生产环境中明显不够,需要将capacity参数加大


4、warn:"Thrift source %s could not append events to the channel."。

原因:查看flume的配置文档可以发现,各种类型的sink(thrift、avro、kafka等)的默认batch-size都是100,file channel、memory channel的transactioncapacity默认也都是100,如果修改了sink的batch-size,需要将batch-size设置为小于等于channel的transactioncapacity的值,否则就会出现上面的warn导致数据无法正常发送


5、agent处报

(SinkRunner-PollingRunner-DefaultSinkProcessor) [ERROR - org.apache.flume.SinkRunner$PollingRunner.run(SinkRunner.java:160)] Unable to deliver event. Exception follows.
org.apache.flume.EventDeliveryException: Failed to send events
        at org.apache.flume.sink.AbstractRpcSink.process(AbstractRpcSink.java:392)
        at org.apache.flume.sink.DefaultSinkProcessor.process(DefaultSinkProcessor.java:68)
        at org.apache.flume.SinkRunner$PollingRunner.run(SinkRunner.java:147)
        at java.lang.Thread.run(Thread.java:744)
Caused by: org.apache.flume.EventDeliveryException: NettyAvroRpcClient { host: 10.200.197.82, port: 5150 }: Failed to send batch
        at org.apache.flume.api.NettyAvroRpcClient.appendBatch(NettyAvroRpcClient.java:315)
        at org.apache.flume.sink.AbstractRpcSink.process(AbstractRpcSink.java:376)
        ... 3 more
Caused by: org.apache.flume.EventDeliveryException: NettyAvroRpcClient { host: 10.200.197.82, port: 5150 }: Exception thrown from remote handler
        at org.apache.flume.api.NettyAvroRpcClient.waitForStatusOK(NettyAvroRpcClient.java:397)
        at org.apache.flume.api.NettyAvroRpcClient.appendBatch(NettyAvroRpcClient.java:374)
        at org.apache.flume.api.NettyAvroRpcClient.appendBatch(NettyAvroRpcClient.java:303)
        ... 4 more
Caused by: java.util.concurrent.ExecutionException: java.io.IOException: Connection reset by peer
        at org.apache.avro.ipc.CallFuture.get(CallFuture.java:128)
        at org.apache.flume.api.NettyAvroRpcClient.waitForStatusOK(NettyAvroRpcClient.java:389)
        ... 6 more
Caused by: java.io.IOException: Connection reset by peer
        at sun.nio.ch.FileDispatcherImpl.read0(Native Method)
        at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39)
        at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223)
        at sun.nio.ch.IOUtil.read(IOUtil.java:192)
        at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:379)
        at org.jboss.netty.channel.socket.nio.NioWorker.read(NioWorker.java:59)
        at org.jboss.netty.channel.socket.nio.AbstractNioWorker.processSelectedKeys(AbstractNioWorker.java:471)
        at org.jboss.netty.channel.socket.nio.AbstractNioWorker.run(AbstractNioWorker.java:332)
        at org.jboss.netty.channel.socket.nio.NioWorker.run(NioWorker.java:35)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        ... 1 more


collector报

2017-08-21 16:36:43,010 (New I/O  worker #12) [WARN - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.exceptionCaught(NettyServer.java:201)] Unexpected exception from downstream.
org.apache.avro.AvroRuntimeException: Excessively large list allocation request detected: 349070535 items! Connection closed.
        at org.apache.avro.ipc.NettyTransportCodec$NettyFrameDecoder.decodePackHeader(NettyTransportCodec.java:167)
        at org.apache.avro.ipc.NettyTransportCodec$NettyFrameDecoder.decode(NettyTransportCodec.java:139)
        at org.jboss.netty.handler.codec.frame.FrameDecoder.callDecode(FrameDecoder.java:422)
        at org.jboss.netty.handler.codec.frame.FrameDecoder.cleanup(FrameDecoder.java:478)
        at org.jboss.netty.handler.codec.frame.FrameDecoder.channelDisconnected(FrameDecoder.java:366)
        at org.jboss.netty.channel.Channels.fireChannelDisconnected(Channels.java:399)
        at org.jboss.netty.channel.socket.nio.AbstractNioWorker.close(AbstractNioWorker.java:721)
        at org.jboss.netty.channel.socket.nio.NioServerSocketPipelineSink.handleAcceptedSocket(NioServerSocketPipelineSink.java:111)
        at org.jboss.netty.channel.socket.nio.NioServerSocketPipelineSink.eventSunk(NioServerSocketPipelineSink.java:66)
        at org.jboss.netty.handler.codec.oneone.OneToOneEncoder.handleDownstream(OneToOneEncoder.java:54)
        at org.jboss.netty.channel.Channels.close(Channels.java:820)
        at org.jboss.netty.channel.AbstractChannel.close(AbstractChannel.java:197)
        at org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.exceptionCaught(NettyServer.java:202)
        at org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:173)
        at org.jboss.netty.handler.codec.frame.FrameDecoder.exceptionCaught(FrameDecoder.java:378)
        at org.jboss.netty.channel.Channels.fireExceptionCaught(Channels.java:533)
        at org.jboss.netty.channel.AbstractChannelSink.exceptionCaught(AbstractChannelSink.java:48)
        at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:268)
        at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:255)
        at org.jboss.netty.channel.socket.nio.NioWorker.read(NioWorker.java:84)
        at org.jboss.netty.channel.socket.nio.AbstractNioWorker.processSelectedKeys(AbstractNioWorker.java:471)
        at org.jboss.netty.channel.socket.nio.AbstractNioWorker.run(AbstractNioWorker.java:332)
        at org.jboss.netty.channel.socket.nio.NioWorker.run(NioWorker.java:35)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        at java.lang.Thread.run(Thread.java:745)

原因:当agent到collector的数据在agent的avro sink处进行压缩时,在collector的avro source处必须解压,否则数据无法发送



6、org.apache.kafka.common.errors.RecordTooLargeException: There are some messages at [Partition=Offset]: {ssp_package-0=388595} whose size is larger than the fetch size 1048576 and hence cannot be ever returned. Increase the fetch size, or decrease the maximum message size the broker will allow.
2017-10-11 01:30:10,000 (PollableSourceRunner-KafkaSource-r1) [ERROR - org.apache.flume.source.kafka.KafkaSource.doProcess(KafkaSource.java:314)] KafkaSource EXCEPTION, {}

原因:配置kafka source时,flume作为kafka的consumer,在consumer消费kafka数据时,默认最大文件大小是1m,如果文件大小超过1m,需要手动在配置里面调整参数,

但是在flume官网的配置说明-kakka source中,并没有找到配置fetch size的地方,但是在配置的最后一行有一个

Other Kafka Consumer Properties--These properties are used to configure the Kafka Consumer. Any consumer property supported by Kafka can be used. The only requirement is to prepend the property name with the prefix kafka.consumer. For example: kafka.consumer.auto.offset.reset

此处配置用的是kafka的配置方法,在kafka官网的配置文档-consumer configs-max.partition.fetch.bytes有相关说明

agent.sources.r1.kafka.consumer.max.partition.fetch.bytes = 10240000

此处将consumer的fetch.byte加到10m


7、2017-10-13 01:19:47,991 (SinkRunner-PollingRunner-DefaultSinkProcessor) [ERROR - org.apache.flume.sink.kafka.KafkaSink.process(KafkaSink.java:240)] Failed to publish events
java.util.concurrent.ExecutionException: org.apache.kafka.common.errors.RecordTooLargeException: The message is 2606058 bytes when serialized which is larger than the maximum request size you have configured with the max.request.size configuration.
        at org.apache.kafka.clients.producer.KafkaProducer$FutureFailure.<init>(KafkaProducer.java:686)
        at org.apache.kafka.clients.producer.KafkaProducer.send(KafkaProducer.java:449)
        at org.apache.flume.sink.kafka.KafkaSink.process(KafkaSink.java:212)
        at org.apache.flume.sink.DefaultSinkProcessor.process(DefaultSinkProcessor.java:67)
        at org.apache.flume.SinkRunner$PollingRunner.run(SinkRunner.java:145)
        at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.kafka.common.errors.RecordTooLargeException: The message is 2606058 bytes when serialized which is larger than the maximum request size you have configured with the max.request.size configuration.

原因:与上一点类似,此处是kafka sink时,flume作为producer,也要设置文件的fetch大小,同样是参考kafka官网的配置

agent.sinks.k1.kafka.producer.max.request.size = 10240000


8、java.io.IOException: Too many open files
        at sun.nio.ch.ServerSocketChannelImpl.accept0(Native Method)
        at sun.nio.ch.ServerSocketChannelImpl.accept(ServerSocketChannelImpl.java:250)
        at org.mortbay.jetty.nio.SelectChannelConnector$1.acceptChannel(SelectChannelConnector.java:75)
        at org.mortbay.io.nio.SelectorManager$SelectSet.doSelect(SelectorManager.java:686)
        at org.mortbay.io.nio.SelectorManager.doSelect(SelectorManager.java:192)
        at org.mortbay.jetty.nio.SelectChannelConnector.accept(SelectChannelConnector.java:124)
        at org.mortbay.jetty.AbstractConnector$Acceptor.run(AbstractConnector.java:708)
        at org.mortbay.thread.QueuedThreadPool$PoolThread.run(QueuedThreadPool.java:582)

原因:文件句柄占用太多,首先查看flume占用句柄个数

lsof -p pid | wc -l 

pid是flume进程号,

vim /etc/security/limits.conf 

在最后加入  
* soft nofile 4096  
* hard nofile 4096  

最前的 * 表示所有用户,改完后重启下flume服务


9、(kafka-producer-network-thread | producer-1) [ERROR - org.apache.kafka.clients.producer.internals.Sender.run(Sender.java:130)] Uncaught 
error in kafka producer I/O thread:
org.apache.kafka.common.protocol.types.SchemaException: Error reading field 'throttle_time_ms': java.nio.BufferUnderflowException
        at org.apache.kafka.common.protocol.types.Schema.read(Schema.java:71)
        at org.apache.kafka.clients.NetworkClient.handleCompletedReceives(NetworkClient.java:439)
        at org.apache.kafka.clients.NetworkClient.poll(NetworkClient.java:265)
        at org.apache.kafka.clients.producer.internals.Sender.run(Sender.java:216)
        at org.apache.kafka.clients.producer.internals.Sender.run(Sender.java:128)
        at java.lang.Thread.run(Thread.java:744)

原因:kafka集群版本较老,flume版本较新,此处kafka使用的版本是较老的0.8.2, flume使用1.7则会报上述错误,只能将flume降为1.6版本


9、sink到kafka上的数据没有均匀的分布在各个partition上,而是全部放在了同一个partition上

原因:这是老版本flume遗留下的一个bug,需要在event中构造一个包含key为 key 的header 键值对就能达到目的

a1.sources.flume0.interceptors.i1.type = org.apache.flume.sink.solr.morphline.UUIDInterceptor$Builder
a1.sources.flume0.interceptors.i1.headerName = key
真正没有随机的原因本文并没有直接去找到,是借助另一种方式解决了问题
### 使用Flume实时捕获MySQL数据库中的更新 Apache Flume 是一种分布式、可靠且高可用的日志收集系统,主要用于从各种数据源中高效地采集日志并将其传输到集中式存储系统(如 HDFS 或 Kafka)。然而,Flume 并不直接支持从关系型数据库(如 MySQL)中捕获变更录的功能。为了实现这一目标,通常需要借助其他工具或技术来完成。 以下是通过 Flume 实现实时捕获 MySQL 数据库中更新的一种常见方法: #### 方法概述 1. **启用 MySQL 的 Binlog 功能** 配置 MySQL 启用二进制日志 (Binlog),这是 MySQL 提供的一个功能,用于录所有的 DDL 和 DML 操作语句。这些日志可以被外部程序读取以获取表结构和数据的变化[^3]。 2. **使用 Canal 工具** Alibaba 开发的 Canal 是一款开源项目,能够模拟 MySQL 主从复制机制,解析 MySQL 的 Binlog 日志并将其中的数据变化事件发送给下游消费者。Canal 可以作为 Flume 的数据源之一[^4]。 3. **配置 Flume 接收来自 Canal 的消息** 将 Canal 解析后的增量数据写入到 Flume 中间件里,再由 Flume 负责后续处理流程,比如存放到文件或者推送至 Kafka 等消息队列服务上进一步分析加工[^5]。 #### 具体实施步骤说明如下: - 安装部署 Canal Server; - 修改 my.cnf 文件开启 binlog,并设置 server-id 参数; - 创建具有 REPLICATION SLAVE 权限的新用户账号授权访问权限; - 编辑 canal.conf 设置监听的目标实例地址端口以及用户名密码等连接参数; - 启动 Canal 应用程序开始同步操作; - 构建自定义 Source 插件让 Flume 支持接收 Canal 输出流; - 测试验证整个链路是否正常工作运行无误; 下面给出一段简单的 Java 代码片段展示如何基于 Avro 协议开发一个兼容 Apache Flume Event Format 的 Source 组件: ```java public class MyCustomSource extends AbstractSource implements Configurable { private String host; private int port; @Override public void configure(Context context) { this.host = context.getString("canal.server.address"); this.port = Integer.parseInt(context.getString("canal.server.port")); } @Override public void start() { new Thread(() -> { try(SocketChannel channel = SocketChannel.open(new InetSocketAddress(host, port))) { while(true){ ByteBuffer buffer = ByteBuffer.allocate(8 * 1024); StringBuilder sbuilder=new StringBuilder(); // Read data from socket and convert it into flume event format getChannelProcessor().processEvent(event); } } catch(IOException e){e.printStackTrace();} }).start(); } } ``` 上述示例仅作参考用途,请根据实际需求调整逻辑细节部分。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值