We Will Rock You

西安黑马Android就业12期举办项目PK赛,各组成员展示成果,通过比赛加深对知识的理解与应用,提升项目开发经验和团队合作能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

We  Will  Rock  You


我们经过几个月的坚持,拼凑起平日零散的记忆,冲刺般的劲,奔向代码的怀抱,紧紧地拥抱着它,用尽全心去调试、解决bug,感受它带来的无比神奇与惊喜——西安黑马Android就业12期(20161206面授)班级项目PK开始啦!!!

为了缓解各组PK的“火药味”,我们准备了各种好吃的缓解大家紧张的气氛呦!

 

 


      在PK之前,请让我们认识一位特殊的人员“计时员”。规则:演示员在讲台上演示本组的项目时,用时不得超过15分钟,当演讲时间为15分钟的时候,下面的这位帅锅会亮牌哦! 

 



      下面,有请我们本次PK的各组帅气独霸的演讲人员出场

   



      各组根据我们赛前抽签的顺序依次进行演讲,下面的学员们都在认真听讲、欣赏别组的项目

 


 



      当然,    不乏有些学员演讲的溜得很,逗大家开怀大笑

 


 



      在每组演赛的过程中,我们的共有11位评分老师给演讲组进行评分,我们是很正规的噢!

 



      在大家PK的过程中,我们的镁铝班主任也在忙着哦,瞧,她正拿着“算盘”根据评委老师的评分计算总分喔!

   



      经过几小时的激烈PK,我们的获奖组诞生啦!别激动,在宣布结果之前,我们的郑老师要先对本次比赛过程中的问题进行了总结

 



      叮当叮当叮当,我们下面有请我们的获奖组上台领奖!

     


      
       进行到这里,我们的项目PK即将谢幕,通过这次的比赛学员们收获多多!我们收获的是对知识的整合应用;我们收获的是项目开发经验;我们收获的是团队合作,我们收获的是感动与饱满的笑容!

   

 

内容概要:本文详细介绍了使用KGDB(Kernel GNU Debugger)调试Linux内核的方法及其重要性。文章首先强调了Linux内核作为系统核心的重要性及其调试的必要性,随后介绍了KGDB的基本原理和优势,包括其基于调试stub和GDB串行协议的工作机制。接着,文章详细描述了使用KGDB调试内核的具体步骤,包括准备工作、内核配置、设置启动参数、建立调试连接和进行调试操作。文中还通过一个实战案例展示了KGDB在解决实际问题中的应用,并总结了使用KGDB时的注意事项和常见问题的解决方法。最后,文章展望了KGDB未来的发展方向和应用场景,如优化调试性能、支持新型硬件架构以及在嵌入式系统、云计算和大数据领域的应用。 适合人群:具备一定Linux系统开发经验的研发人员,尤其是那些需要调试和优化Linux内核的工程师。 使用场景及目标:①帮助开发者深入了解Linux内核的运行状态,精准定位并修复内核问题;②优化内核性能,提高系统的稳定性和可靠性;③适用于嵌入式系统开发、远程服务器维护等场景,特别是在硬件资源有限或无法直接接触设备的情况下。 其他说明:在使用KGDB进行调试时,需特别注意串口设置的一致性、内核版本的兼容性以及调试信息的完整性。同时,要解决常见的连接失败、断点无效等问题,确保调试过程顺利进行。未来,KGDB有望在技术上不断优化,并拓展到更多应用场景中,为Linux系统的持续发展提供支持。
### 如何用Python实现歌词的情感分析 要对歌词进行情感分析,可以通过多种技术和工具来实现。以下是具体方法及其背后的原理: #### 1. 数据准备 为了进行情感分析,首先需要获取歌词数据。这可以通过网络爬虫技术从公开的音乐评论网站上抓取歌词[^3]。例如,使用`requests`和`BeautifulSoup`库可以从网页中提取所需的数据。 ```python import requests from bs4 import BeautifulSoup def fetch_lyrics(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') lyrics_div = soup.find('div', {'class': 'lyrics'}) if lyrics_div: return lyrics_div.get_text() return None ``` #### 2. 文本预处理 在进行情感分析之前,通常需要对文本进行清理和标准化操作。这些步骤可能包括去除停用词、标点符号以及转换为小写形式等[^1]。 ```python import re import nltk nltk.download('stopwords') from nltk.corpus import stopwords def preprocess(text): stop_words = set(stopwords.words('english')) text = re.sub(r'\W+', ' ', text.lower()) # 移除非字母字符并转为小写 tokens = text.split() filtered_tokens = [word for word in tokens if word not in stop_words] return " ".join(filtered_tokens) example_lyric = "I am so happy today!" print(preprocess(example_lyric)) # 输出: i am so happy today ``` #### 3. 使用机器学习模型进行情感分类 一种常见的方式是利用已训练好的情感分析模型来进行预测。比如VADER(Valence Aware Dictionary and sEntiment Reasoner),它特别适合于社交媒体文本的情绪检测[^5]。 ```python from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer analyzer = SentimentIntensityAnalyzer() def analyze_sentiment(lyric): sentiment_scores = analyzer.polarity_scores(lyric) compound_score = sentiment_scores['compound'] if compound_score >= 0.05: return "Positive" elif compound_score <= -0.05: return "Negative" else: return "Neutral" sample_lyric = "Life is beautiful when you smile." sentiment_result = analyze_sentiment(sample_lyric) print(f"The sentiment of '{sample_lyric}' is {sentiment_result}.") # Positive or Negative etc. ``` #### 4. 应用深度学习模型提升效果 对于更复杂的场景或者更高的准确性需求,则可以考虑采用基于神经网络的方法如LSTM或Transformer架构下的BERT模型[^4]^。下面是一个简单的例子展示如何加载预训练Bert模型执行二元情绪判断任务。 ```python from transformers import BertTokenizer, BertForSequenceClassification import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased') def bert_analyze_sentiment(lyric): inputs = tokenizer.encode_plus( lyric, add_special_tokens=True, max_length=64, padding='max_length', truncation=True, return_tensors="pt" ) with torch.no_grad(): outputs = model(**inputs)[0] prediction = torch.argmax(outputs).item() label_map = ["Negative", "Positive"] return label_map[prediction] test_sentence = "We will rock you forever!" result_bert = bert_analyze_sentiment(test_sentence) print(result_bert) # Possible output: Positive ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值