算法数据结构——区间动态规划介绍

1. 区间动态规划简介

1.1 区间动态规划定义

区间动态规划:线性 DP 的一种,简称为「区间 DP」。以「区间长度」划分阶段,以两个坐标(区间的左、右端点)作为状态的维度。一个状态通常由被它包含且比它更小的区间状态转移而来。

区间 DP 的主要思想就是:先在小区间内得到最优解,再利用小区间的最优解合并,从而得到大区间的最优解,最终得到整个区间的最优解。

根据小区间向大区间转移情况的不同,常见的区间 DP 问题可以分为两种:

  1. 单个区间从中间向两侧更大区间转移的区间 DP 问题。比如从区间 [i + 1, j - 1] 转移到更大区间 [i, j]。

  2. 多个(大于等于 2 个)小区间转移到大区间的区间 DP 问题。比如从区间 [i, k] 和区间 [k, j] 转移到区间 [i, j]。

下面我们讲解一下这两种区间 DP 问题的基本解题思路。

1.2 区间 DP 问题的基本思路

1.2.1 第 1 种区间 DP 问题基本思路

从中间向两侧转移的区间 DP 问题的状态转移方程一般为:dpi = max \lbrace dpi + 1, \quad dpi + 1, \quad dpi \rbrace + costi, \quad i \le j。

  1. 其中 dpi 表示为:区间 [i, j](即下标位置 i 到下标位置 j 上所有元素)上的最大价值。

  2. cost 表示为:从小区间转移到区间 [i, j] 的代价。

  3. 这里的 max / min 取决于题目是求最大值还是求最小值。

从中间向两侧转移的区间 DP 问题的基本解题思路如下:

  1. 枚举区间的起点;

  2. 枚举区间的终点;

  3. 根据状态转移方程计算从小区间转移到更大区间后的最优值。

对应代码如下:


  
  
  1. for i in range(size - 1, - 1, - 1): # 枚举区间起点
  2. for j in range(i + 1, size): # 枚举区间终点
  3. # 状态转移方程,计算转移到更大区间后的最优值
  4. dp[i][j] = max(dp[i + 1][j - 1], dp[i + 1][j], dp[i][j - 1]) + cost[i][j]
1.2.3 第 2 种区间 DP 问题基本思路

多个(大于等于 2 个)小区间转移到大区间的区间 DP 问题的状态转移方程一般为:dpi = max / min \lbrace dpi + dpk + 1 + costi \rbrace,\quad i < k \le j。

  1. 其中状态 dpi 表示为:区间 [i, j] (即下标位置 i 到下标位置 j 上所有元素)上的最大价值。

  2. costi 表示为:将两个区间 [i, k] 与 [k + 1, j] 中的元素合并为区间 [i, j] 中的元素的代价。

  3. 这里的 max / min 取决于题目是求最大值还是求最小值。

多个小区间转移到大区间的区间 DP 问题的基本解题思路如下:

  1. 枚举区间长度;

  2. 枚举区间的起点,根据区间起点和区间长度得出区间终点;

  3. 枚举区间的分割点,根据状态转移方程计算合并区间后的最优值。

对应代码如下:


  
  
  1. for l in range( 1, n): # 枚举区间长度
  2. for i in range(n): # 枚举区间起点
  3. j = i + l - 1 # 根据起点和长度得到终点
  4. if j >= n:
  5. break
  6. dp[i][j] = float( '-inf') # 初始化 dp[i][j]
  7. for k in range(i, j + 1): # 枚举区间分割点
  8. # 状态转移方程,计算合并区间后的最优值
  9. dp[i][j] = max(dp[i][j], dp[i][k] + dp[k + 1][j] + cost[i][j])

2. 区间 DP 问题的应用

下面我们根据几个例子来讲解一下区间 DP 问题的具体解题思路。

2.1 最长回文子序列

2.1.1 题目链接
2.1.2 题目大意

描述:给定一个字符串 s。

要求:找出其中最长的回文子序列,并返回该序列的长度。

说明

  • 子序列:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

  • 1 \le s.length \le 1000。

  • s 仅由小写英文字母组成。

示例

  • 示例 1:

输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb"。
  • 示例 2:

输入:s = "cbbd"
输出:2
解释:一个可能的最长回文子序列为 "bb"。
2.1.3 解题思路
思路 1:动态规划
1. 划分阶段

按照区间长度进行阶段划分。

2. 定义状态

定义状态 dpi 表示为:字符串 s 在区间 [i, j] 范围内的最长回文子序列长度。

3. 状态转移方程

我们对区间 [i, j] 边界位置上的字符 s[i] 与 s[j] 进行分类讨论:

  1. 如果 s[i] = s[j],则 dpi 为区间 [i + 1, j - 1] 范围内最长回文子序列长度 + 2,即 dpi = dpi + 1 + 2。

  2. 如果 s[i] \ne s[j],则 dpi 取决于以下两种情况,取其最大的一种:

    1. 加入 s[i] 所能组成的最长回文子序列长度,即:dpi = dpi

    2. 加入 s[j] 所能组成的最长回文子序列长度,即:dpi = dpi - 1

则状态转移方程为:

dpi = \begin{cases} max \lbrace dpi + 1 + 2 \rbrace & s[i] = s[j] \cr max \lbrace dpi, dpi - 1 \rbrace & s[i] \ne s[j] \end{cases}

4. 初始条件
  • 单个字符的最长回文序列是 1,即 dpi = 1。

5. 最终结果

由于 dpi 依赖于 dpi + 1、dpi + 1、dpi,所以我们应该按照从下到上、从左到右的顺序进行遍历。

根据我们之前定义的状态,dpi 表示为:字符串 s 在区间 [i, j] 范围内的最长回文子序列长度。所以最终结果为 dp0

思路 1:代码

  
  
  1. class Solution:
  2. def longestPalindromeSubseq( self, s: str) -> int:
  3. size = len(s)
  4. dp = [[ 0 for _ in range(size)] for _ in range(size)]
  5. for i in range(size):
  6. dp[i][i] = 1
  7. for i in range(size - 1, - 1, - 1):
  8. for j in range(i + 1, size):
  9. if s[i] == s[j]:
  10. dp[i][j] = dp[i + 1][j - 1] + 2
  11. else:
  12. dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
  13. return dp[ 0][size - 1]
思路 1:复杂度分析
  • 时间复杂度:O(n^2),其中 n 为字符串 s 的长度。

  • 空间复杂度:O(n^2)。

2.2 戳气球

2.2.1 题目链接
2.2.2 题目大意

描述:有 n 个气球,编号为 0 \sim n - 1,每个气球上都有一个数字,这些数字存在数组 nums 中。现在开始戳破气球。其中戳破第 i 个气球,可以获得 nums[i - 1] \times nums[i] \times nums[i + 1] 枚硬币,这里的 i - 1 和 i + 1 代表和 i 相邻的两个气球的编号。如果 i - 1 或 i + 1 超出了数组的边界,那么就当它是一个数字为 1 的气球。

要求:求出能获得硬币的最大数量。

说明

  • n == nums.length。

  • 1 \le n \le 300。

  • 0 \le nums[i] \le 100。

示例

  • 示例 1:

输入:nums = [3,1,5,8]
输出:167
解释:
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins =  3*1*5    +   3*5*8   +  1*3*8  + 1*8*1 = 167
  • 示例 2:

输入:nums = [1,5]
输出:10
解释:
nums = [1,5] --> [5] --> []
coins = 1*1*5 +  1*5*1 = 10
2.2.3 解题思路
思路 1:动态规划

根据题意,如果 i - 1 或 i + 1 超出了数组的边界,那么就当它是一个数字为 1 的气球。我们可以预先在 nums 的首尾位置,添加两个数字为 1 的虚拟气球,这样变成了 n + 2 个气球,气球对应编号也变为了 0 \sim n + 1。

对应问题也变成了:给定 n + 2 个气球,每个气球上有 1 个数字,代表气球上的硬币数量,当我们戳破气球 nums[i] 时,就能得到对应 nums[i - 1] \times nums[i] \times nums[i + 1] 枚硬币。现在要戳破 0 \sim n + 1 之间的所有气球(不包括编号 0 和编号 n + 1 的气球),请问最多能获得多少枚硬币?

1. 划分阶段

按照区间长度进行阶段划分。

2. 定义状态

定义状态 dpi 表示为:戳破所有气球 i 与气球 j 之间的气球(不包含气球 i 和 气球 j),所能获取的最多硬币数。

3. 状态转移方程

假设气球 i 与气球 j 之间最后一个被戳破的气球编号为 k。则 dpi 取决于由 k 作为分割点分割出的两个区间 (i, k) 与

(k, j) 上所能获取的最多硬币数 + 戳破气球 k 所能获得的硬币数,即状态转移方程为:

dpi = max \lbrace dpi + dpk + nums[i] \times nums[k] \times nums[j] \rbrace, \quad i < k < j

4. 初始条件
  • dpi 表示的是开区间,则 i < j - 1。而当 i \ge j - 1 时,所能获得的硬币数为 0,即 dpi = 0,\quad i \ge j - 1。

5. 最终结果

根据我们之前定义的状态,dpi 表示为:戳破所有气球 i 与气球 j 之间的气球(不包含气球 i 和 气球 j),所能获取的最多硬币数。所以最终结果为 dp0

思路 1:代码

  
  
  1. class Solution:
  2. def maxCoins( self, nums: List[int]) -> int:
  3. size = len(nums)
  4. arr = [ 0 for _ in range(size + 2)]
  5. arr[ 0] = arr[size + 1] = 1
  6. for i in range( 1, size + 1):
  7. arr[i] = nums[i - 1]
  8. dp = [[ 0 for _ in range(size + 2)] for _ in range(size + 2)]
  9. for l in range( 3, size + 3):
  10. for i in range( 0, size + 2):
  11. j = i + l - 1
  12. if j >= size + 2:
  13. break
  14. for k in range(i + 1, j):
  15. dp[i][j] = max(dp[i][j], dp[i][k] + dp[k][j] + arr[i] * arr[j] * arr[k])
  16. return dp[ 0][size + 1]
思路 1:复杂度分析
  • 时间复杂度:O(n^3),其中 n 为气球数量。

  • 空间复杂度:O(n^2)。

2.3 切棍子的最小成本

2.3.1 题目链接
2.3.2 题目大意

描述:给定一个整数 n,代表一根长度为 n 个单位的木根,木棍从 0 \sim n 标记了若干位置。例如,长度为 6 的棍子可以标记如下:

再给定一个整数数组 cuts,其中 cuts[i] 表示需要将棍子切开的位置。

我们可以按照顺序完成切割,也可以根据需要更改切割顺序。

每次切割的成本都是当前要切割的棍子的长度,切棍子的总成本是所有次切割成本的总和。对棍子进行切割将会把一根木棍分成两根较小的木棍(这两根小木棍的长度和就是切割前木棍的长度)。

要求:返回切棍子的最小总成本。

说明

  • 2 \le n \le 10^6。

  • 1 \le cuts.length \le min(n - 1, 100)。

  • 1 \le cuts[i] \le n - 1。

  • cuts 数组中的所有整数都互不相同。

示例

  • 示例 1:

输入:n = 7, cuts = [1,3,4,5]
输出:16
解释:按 [1, 3, 4, 5] 的顺序切割的情况如下所示。
第一次切割长度为 7 的棍子,成本为 7 。第二次切割长度为 6 的棍子(即第一次切割得到的第二根棍子),第三次切割为长度 4 的棍子,最后切割长度为 3 的棍子。总成本为 7 + 6 + 4 + 3 = 20 。而将切割顺序重新排列为 [3, 5, 1, 4] 后,总成本 = 16(如示例图中 7 + 4 + 3 + 2 = 16)。

  • 示例 2:

输入:n = 9, cuts = [5,6,1,4,2]
输出:22
解释:如果按给定的顺序切割,则总成本为 25。总成本 <= 25 的切割顺序很多,例如,[4, 6, 5, 2, 1] 的总成本 = 22,是所有可能方案中成本最小的。
2.3.3 解题思路
思路 1:动态规划

我们可以预先在数组 cuts 种添加位置 0 和位置 n,然后对数组 cuts 进行排序。这样待切割的木棍就对应了数组中连续元素构成的「区间」。

1. 划分阶段

按照区间长度进行阶段划分。

2. 定义状态

定义状态 dpi 表示为:切割区间为 [i, j] 上的小木棍的最小成本。

3. 状态转移方程

假设位置 i 与位置 j 之间最后一个切割的位置为 k,则 dpi 取决与由 k 作为切割点分割出的两个区间 [i, k] 与 [k, j] 上的最小成本 + 切割位置 k 所带来的成本。

而切割位置 k 所带来的成本是这段区间所代表的小木棍的长度,即 cuts[j] - cuts[i]。

则状态转移方程为:dpi = min \lbrace dpi + dpk + cuts[j] - cuts[i] \rbrace, \quad i < k < j

4. 初始条件
  • 相邻位置之间没有切割点,不需要切割,最小成本为 0,即 dpi - 1 = 0。

  • 其余位置默认为最小成本为一个极大值,即 dpi = \infty, \quad i + 1 \ne j。

5. 最终结果

根据我们之前定义的状态,dpi 表示为:切割区间为 [i, j] 上的小木棍的最小成本。 所以最终结果为 dp0

思路 1:代码

  
  
  1. class Solution:
  2. def minCost( self, n: int, cuts: List[int]) -> int:
  3. cuts.append( 0)
  4. cuts.append(n)
  5. cuts.sort()
  6. size = len(cuts)
  7. dp = [[ float( 'inf') for _ in range(size)] for _ in range(size)]
  8. for i in range( 1, size):
  9. dp[i - 1][i] = 0
  10. for l in range( 3, size + 1): # 枚举区间长度
  11. for i in range(size): # 枚举区间起点
  12. j = i + l - 1 # 根据起点和长度得到终点
  13. if j >= size:
  14. continue
  15. dp[i][j] = float( 'inf')
  16. for k in range(i + 1, j): # 枚举区间分割点
  17. # 状态转移方程,计算合并区间后的最优值
  18. dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + cuts[j] - cuts[i])
  19. return dp[ 0][size - 1]
思路 1:复杂度分析
  • 时间复杂度:O(m^3),其中 m 为数组 cuts 的元素个数。

  • 空间复杂度:O(m^2)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值