贝叶斯地理统计模型R-INLA-4 贝叶斯时空模型
在前述的内容中,我们介绍了,如何处理空间的数据,利用海拔高度预测降雨量的例子。但是该例子仅仅涉及到的是涉及到回归方程中,考虑影响因素及空间效应。
那么如果我们的数据有时间信息,如何加入到贝叶斯时空分析呢。譬如每年对某一个地区进行疾病的发病率调查,10年数据整合在一起,就可以从时间上或空间上看疾病的变化规律,也就会用到贝叶斯时空模型。
下面我们将介绍贝叶斯时空模型。该文章中,会简化数学计算的过程,主要是针对,在有数据的基础上,如何应用贝叶斯时空模型,找出影响因素,绘制时间变化的空间分布预测图。
1.数据集
我们模拟一个房屋与面积的地理位置数据,从2010年到2015年的房地产数据。因为是模拟数据,不具有任何实际意义,仅仅作为展示。
通过简单的回归方程,发现,房屋价格与面积及年份成正相关,具有统计学意义。说明随时间推迟,房子越值钱,且面积越大价格也越高。符合实际
library(inlabru)
library(INLA)
library(AmesHousing)
rm(list = ls())
library(INLA)
data("PRborder")
data(PRprec)
coor