概率模型与概率图模型
概率模型
概率模型(probabilistic model)提供了一种描述框架,将学习任务归结于计算变量的概率分布。在概率模型中,利用已知变量推测未知变量的分布称为推断(inference),其核心是如何基于可观测变量推测出未知变量的条件分布。假定所关心的变量集合为Y,可观测变量集合为O,其他变量的集合为R。
- 生成式(generative)模型考虑联合分布P(Y,R,O)
- 判别式(discriminative)模型考虑条件分布P(Y,R|O)
给定一组观测变量值,推断就是要由P(Y,R,O)或P(Y,R|O)得到条件概率分布P(Y|O)
概率图模型
概率图模型(probabilistic graphical model)是一类用图来表达变量相关关系的概率模型。它以图为表示工具,最常见的是用一个结点表示一个或一组随机变量,结点之间的边表示变量间的概率相关关系,即变量关系图。
根据边的性质不同,概率图模型可大致分为两类
- 贝叶斯网</