一次非常有意思的 SQL 优化经历

我用的数据库是mysql5.6,下面简单的介绍下场景

课程表

1
2
3
4
create table Course(
c_id int PRIMARY KEY ,
name varchar (10)
)

数据100条
学生表:

1
2
3
4
create table Student(
id int PRIMARY KEY ,
name varchar (10)
)

数据70000条
学生成绩表SC

1
2
3
4
5
6
CREATE table SC(
sc_id int PRIMARY KEY ,
s_id int ,
c_id int ,
score int
)

数据70w条
查询目的:
查找语文考100分的考生
查询语句:

1
select s.* from Student s where s.s_id in ( select s_id from SC sc where sc.c_id = 0 and sc.score = 100 )

执行时间:30248.271s
晕,为什么这么慢,先来查看下查询计划:

1
2
EXPLAIN
select s.* from Student s where s.s_id in ( select s_id from SC sc where sc.c_id = 0 and sc.score = 100 )

发现没有用到索引,type全是ALL,那么首先想到的就是建立一个索引,建立索引的字段当然是在where条件的字段。
先给sc表的c_id和score建个索引

1
2
CREATE index sc_c_id_index on SC(c_id);
CREATE index sc_score_index on SC(score);

再次执行上述查询语句,时间为: 1.054s
快了3w多倍,大大缩短了查询时间,看来索引能极大程度的提高查询效率,建索引很有必要,很多时候都忘记建
索引了,数据量小的的时候压根没感觉,这优化的感觉挺爽。
但是1s的时间还是太长了,还能进行优化吗,仔细看执行计划:

查看优化后的sql:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
SELECT
  `YSB`.`s`.`s_id` AS `s_id`,
  `YSB`.`s`.` name ` AS ` name `
FROM
  `YSB`.`Student` `s`
WHERE
  < in_optimizer > (
  `YSB`.`s`.`s_id` ,< EXISTS > (
  SELECT
  1
  FROM
  `YSB`.`SC` `sc`
  WHERE
  (
  (`YSB`.`sc`.`c_id` = 0)
  AND (`YSB`.`sc`.`score` = 100)
  AND (
  < CACHE > (`YSB`.`s`.`s_id`) = `YSB`.`sc`.`s_id`
  )
  )
  )
  )

补充:这里有网友问怎么查看优化后的语句
方法如下:
在命令窗口执行

有type=all
按照我之前的想法,该sql的执行的顺序应该是先执行子查询

1
select s_id from SC sc where sc.c_id = 0 and sc.score = 100

耗时:0.001s
得到如下结果:

然后再执行

1
select s.* from Student s where s.s_id in (7,29,5000)

耗时:0.001s
这样就是相当快了啊,Mysql竟然不是先执行里层的查询,而是将sql优化成了exists子句,并出现了EPENDENT SUBQUERY,
mysql是先执行外层查询,再执行里层的查询,这样就要循环70007*11=770077次。
那么改用连接查询呢?

1
2
3
4
5
SELECT s.* from
Student s
INNER JOIN SC sc
on sc.s_id = s.s_id
where sc.c_id=0 and sc.score=100

这里为了重新分析连接查询的情况,先暂时删除索引sc_c_id_index,sc_score_index
执行时间是:0.057s
效率有所提高,看看执行计划:

这里有连表的情况出现,我猜想是不是要给sc表的s_id建立个索引

1
2
CREATE index sc_s_id_index on SC(s_id);
show index from SC

在执行连接查询
时间: 1.076s,竟然时间还变长了,什么原因?查看执行计划:

优化后的查询语句为:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
SELECT
  `YSB`.`s`.`s_id` AS `s_id`,
  `YSB`.`s`.` name ` AS ` name `
FROM
  `YSB`.`Student` `s`
JOIN `YSB`.`SC` `sc`
WHERE
  (
  (
  `YSB`.`sc`.`s_id` = `YSB`.`s`.`s_id`
  )
  AND (`YSB`.`sc`.`score` = 100)
  AND (`YSB`.`sc`.`c_id` = 0)
  )

貌似是先做的连接查询,再进行的where条件过滤
回到前面的执行计划:

这里是先做的where条件过滤,再做连表,执行计划还不是固定的,那么我们先看下标准的sql执行顺序:

正常情况下是先join再where过滤,但是我们这里的情况,如果先join,将会有70w条数据发送join做操,因此先执行where
过滤是明智方案,现在为了排除mysql的查询优化,我自己写一条优化后的sql

1
2
3
4
5
6
7
8
9
10
11
12
13
SELECT
  s.*
FROM
  (
  SELECT
  *
  FROM
  SC sc
  WHERE
  sc.c_id = 0
  AND sc.score = 100
  ) t
INNER JOIN Student s ON t.s_id = s.s_id

即先执行sc表的过滤,再进行表连接,执行时间为:0.054s
和之前没有建s_id索引的时间差不多
查看执行计划:

先提取sc再连表,这样效率就高多了,现在的问题是提取sc的时候出现了扫描表,那么现在可以明确需要建立相关索引

1
2
CREATE index sc_c_id_index on SC(c_id);
CREATE index sc_score_index on SC(score);

再执行查询:

1
2
3
4
5
6
7
8
9
10
11
12
13
SELECT
  s.*
FROM
  (
  SELECT
  *
  FROM
  SC sc
  WHERE
  sc.c_id = 0
  AND sc.score = 100
  ) t
INNER JOIN Student s ON t.s_id = s.s_id

执行时间为:0.001s,这个时间相当靠谱,快了50倍
执行计划:

我们会看到,先提取sc,再连表,都用到了索引。
那么再来执行下sql

1
2
3
4
5
SELECT s.* from
Student s
INNER JOIN SC sc
on sc.s_id = s.s_id
where sc.c_id=0 and sc.score=100

执行时间0.001s
执行计划:

这里是mysql进行了查询语句优化,先执行了where过滤,再执行连接操作,且都用到了索引。

总结:
1.mysql嵌套子查询效率确实比较低
2.可以将其优化成连接查询
3.连接表时,可以先用where条件对表进行过滤,然后做表连接
(虽然mysql会对连表语句做优化)
4.建立合适的索引
5.学会分析sql执行计划,mysql会对sql进行优化,所以分析执行计划很重要

索引优化

上面讲到子查询的优化,以及如何建立索引,而且在多个字段索引时,分别对字段建立了单个索引

后面发现其实建立联合索引效率会更高,尤其是在数据量较大,单个列区分度不高的情况下。

单列索引

查询语句如下:

1
select * from user_test_copy where sex = 2 and type = 2 and age = 10

索引:

1
2
3
CREATE index user_test_index_sex on user_test_copy(sex);
CREATE index user_test_index_type on user_test_copy(type);
CREATE index user_test_index_age on user_test_copy(age);

分别对sex,type,age字段做了索引,数据量为300w,查询时间:0.415s

执行计划:

image_thumb3

发现type=index_merge

这是mysql对多个单列索引的优化,对结果集采用intersect并集操作

多列索引

我们可以在这3个列上建立多列索引,将表copy一份以便做测试

1
create index user_test_index_sex_type_age on user_test(sex,type,age);

查询语句:

1
select * from user_test where sex = 2 and type = 2 and age = 10

执行时间:0.032s,快了10多倍,且多列索引的区分度越高,提高的速度也越多

执行计划:

image_thumb5

最左前缀

多列索引还有最左前缀的特性:

执行一下语句:

1
2
3
select * from user_test where sex = 2
select * from user_test where sex = 2 and type = 2
select * from user_test where sex = 2 and age = 10

都会使用到索引,即索引的第一个字段sex要出现在where条件中

索引覆盖

就是查询的列都建立了索引,这样在获取结果集的时候不用再去磁盘获取其它列的数据,直接返回索引数据即可

如:

1
select sex,type,age from user_test where sex = 2 and type = 2 and age = 10

执行时间:0.003s

要比取所有字段快的多

排序

1
select * from user_test where sex = 2 and type = 2 ORDER BY user_name

时间:0.139s

在排序字段上建立索引会提高排序的效率

1
create index user_name_index on user_test(user_name)

 

最后附上一些sql调优的总结,以后有时间再深入研究

1. 列类型尽量定义成数值类型,且长度尽可能短,如主键和外键,类型字段等等

2. 建立单列索引

3. 根据需要建立多列联合索引

当单个列过滤之后还有很多数据,那么索引的效率将会比较低,即列的区分度较低,

那么如果在多个列上建立索引,那么多个列的区分度就大多了,将会有显著的效率提高。

4. 根据业务场景建立覆盖索引

只查询业务需要的字段,如果这些字段被索引覆盖,将极大的提高查询效率

5. 多表连接的字段上需要建立索引

这样可以极大的提高表连接的效率

6. where条件字段上需要建立索引

7. 排序字段上需要建立索引

8. 分组字段上需要建立索引

9. Where条件上不要使用运算函数,以免索引失效

 

参考文章

http://www.cnblogs.com/linfangshuhellowored/p/4430293.html

慢sql查询

http://tech.meituan.com/mysql-index.html

笛卡尔乘积

http://www.cnblogs.com/Toolo/p/3634563.html

sql优化

http://www.cnblogs.com/mliang/p/3637937.html

http://www.cnblogs.com/xwdreamer/archive/2012/07/19/2599494.html

执行计划参考:

http://www.cnblogs.com/ggjucheng/archive/2012/11/11/2765237.html



转载自:http://blog.jobbole.com/86547/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值