模运算——开启密码学学习之路

模运算在密码学中扮演着重要角色,从奇偶数判别、素数判断到RSA密钥和椭圆曲线的计算。文章介绍了模运算的基本概念、性质,包括同余式、结合律和加法、乘法逆元,并通过费马定理、欧拉定理进行深入讲解。此外,还提及中国剩余定理和实际应用,如加密解密过程的证明。
摘要由CSDN通过智能技术生成

模运算——开启密码学学习之路

综述:学完高数,线性代数,概率论,数学已经学了一大半,本以为数学的知识也就到此结束,但没有想到这只是自己自欺欺人。开始看导师密码学的论文的时候,第一眼就吓傻眼,模运算mod ,没想到还有数论这种东西存在,而且用处广泛。其中《密码编码学与网络安全》书中,我就见证其用处是无处不在,从奇偶数的判别到素数的判别,从模幂运算到最大公约数的求法,从费马定理到欧拉定理,从孙子问题到凯撒密码问题,从RSA密钥到椭圆曲线。无不充斥着模运算的身影,只怪自己是井底之蛙。于是乎要理解密码学和椭圆曲线,就得学习模运算。

基本概念

概念:就是求余数,11 Mod 2余数值为1

数学上的定义:给定一个正整数p  ,任意一个整数 n(正数,负数,0都行) ,一定存在等式n = p*k+r 0r<n)(备注,这个式子很重要,后面许多性质都要用到这个等式) 例子:-11 mod 7 = 3

部分且重要性质:(这里只列了几个需要证明的性质)

1.同余式:正整数abp取模,它们的余数相同,记做 a b % p或者a b (mod p)

2.p|(a-b),则ab (mod p)  备注:(|是整除性符号,也就是(a- b)是p的因子

证明:令a-b=kp;那么a=kp+b1;所以a mod p = kp+b mod p =b mod ;所以ab (mod p)

3.结合率((x+y )mod p +cmod p =x+ (y +c mod) pmod p ;

证明:存在x= k1p +r1,y = k2p+r2;c=k3p+r3;则代入等式左边,等于r1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值