// 八皇后的递归实现
// 八皇后的递归实现
#include<stdio.h>
#include<stdlib.h>
#define N 8 //列
//判断此列是否存在皇后。若有,则为1;没有,则为0
int col[N] = { 0 };
//判断皇后所在的右对角线是否存在皇后。若有,则为1;没有,则为0
//在右对角线N-1+i-j
int right[2 * N - 1] = { 0 };
//判断皇后所在的左对角线是否存在皇后。若有,则为1;没有,则为0
//在右对角线i+j
int left[2 * N - 1] = { 0 };
//用栈存储皇后的列号,行号是下标
int Q[N] = { -1 };
int cnt;
void print()
{
printf("-----第%d组解---------------\n", ++cnt);
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
if (Q[i] == j)
printf("1\t");
else
printf("0\t");
}
printf("\n");
}
printf("\n");
}
void Queen(int i) {
if (i == 8)
{
print();
}
//当第一行最后一个元素放完后,递归结束
for (int j = 0; j < N; j++)
{
if (!col[j] && !left[i + j] && !right[N - 1 + i - j])
{
Q[i] = j;
col[j] = left[i + j] = right[N - 1 + i - j] = 1;
Queen(i + 1);
col[j] = left[i + j] = right[N - 1 + i - j] = 0;
}
}
}
int main(void)
{
Queen(0);
return 0;
}