GAN
文章平均质量分 69
CV小Rookie
love life~
展开
-
第八章 条件生成对抗网络 CGAN
写在前面:最近看了《GAN实战》,由于本人忘性大,所以仅是笔记而已,方便回忆,如果能帮助大家就更好了。目录CGAN架构图CGAN的生成器CGAN的鉴别器CGAN的MNIST实现导入声明模型输入维度CGAN生成器CGAN鉴别器构建并编译CGAN的鉴别器和生成器模型CGAN训练输出样本图像训练模型与前面讲的所有GAN都不同,CGAN(Conditional GAN)使用标签来训练生成器和鉴别器生成器学习为训练数据集中的每个标签生成逼真样本,而鉴别器..原创 2021-10-27 15:20:25 · 1008 阅读 · 0 评论 -
第七章 半监督生成对抗网络SGAN
写在前面:最近看了《GAN实战》,由于本人忘性大,所以仅是笔记而已,方便回忆,如果能帮助大家就更好了。半监督学习是GAN在实际应用中最有前途的领域之一。半监督学习只为训练数据集的一小部分提供类别标签,从这一小部分集中归纳,以有效的对未见过的新样本进行分类。要使半监督学习有效,标签数据和无标签数据必须来自相同的基本分布。半监督生成对抗网络 Semi-Supervised GAN其最特殊的一点:鉴别器是一个多分类器,与传统的GAN(二分类,真假问题判断)不同,SGAN的鉴别器学会分N+1类,其中原创 2021-10-27 13:32:40 · 777 阅读 · 0 评论 -
第六章 渐进式增长生成对抗网络PGGAN
写在前面:最近看了《GAN实战》,由于本人忘性大,所以仅是笔记而已,方便回忆,如果能帮助大家就更好了。一种能够生成全高清的具有照片级真实感图像的前沿技术,一经ICLR2018提出就引起了轰动。本章涉及的四个创新点:高分辨率层的渐进式增长和平滑小批量标准差均衡学习率像素级特征归一化高分辨率层的渐进式增长和平滑渐进式增长:训练过程从几个低分辨率的卷积层发展到多个高分辨率的层,线训练早期的层,再引入更高分辨率的层。平滑:引入这些层时,不是立即跳到该分辨率,而是通过参数(介于0-原创 2021-10-27 13:10:41 · 918 阅读 · 0 评论 -
第五章 GAN训练与挑战
写在前面:最近看了《GAN实战》,由于本人忘性大,所以仅是笔记而已,方便回忆,如果能帮助大家就更好了。评估实际情况中,最大似然估计容易过度泛化,因此生成的样本由于太过于多样化而显得不真实。使用最大似然估计可能会产生现实世界中永远不会出现的样本,例如多个头的狗,或者几十只眼睛的没有身体的长颈鹿。所以应该使用损失函数/评估方法,淘汰“过于泛化”的样本。Inception Score(IS)理想评估的要求:(1)生成的样本既要看起来真实,也要可分辨(看起来逼真,且是数据集中的物品)(2)不原创 2021-10-26 15:18:32 · 543 阅读 · 0 评论 -
第四章 DCGAN
写在前面:最近看了《GAN实战》,由于本人忘性大,所以仅是笔记而已,方便回忆,如果能帮助大家就更好了。深度卷积生成对抗网络(Deep Convolutional GAN,DCGAN)主要贡献:批归一化(batch normalization)...原创 2021-10-25 19:33:26 · 643 阅读 · 0 评论 -
第三章 CGAN
写在前面:最近看了《GAN实战》,由于本人忘性大,所以仅是笔记而已,方便回忆,如果能帮助大家就更好了。目标识别模型学习图像中的模式以识别图像的内容生成器学习合成这些模式(与目标识别模型过程相反)代价函数表示生成器的代价函数,...原创 2021-10-25 17:05:03 · 867 阅读 · 0 评论 -
第二章 自编码器生成模型入门
写在前面:最近看了《GAN实战》,由于本人忘性大,所以仅是笔记而已,方便回忆,如果能帮助大家就更好了。原创 2021-10-25 16:09:08 · 1419 阅读 · 0 评论 -
第一章 GAN简介
最近看了《GAN实战》,由于本人忘性大,所以写个小的笔记吧,方便回忆。生成器和鉴别器关键信息 生成器 鉴别器 输入 一个随机数向量(噪声) 来自训练集的真实样本,来自生成器的伪样本 输出 尽可能令人信服的伪样本 预测输入样本是真实的概率 目标 生成与训练集中数据无差异的伪数据 区分来自生成器的伪样本和来自训练集的真实样本 GAN训练过程:(1)训练鉴别器 a.从训练集中随机抽取真实样本x。 b.获...原创 2021-10-24 16:10:27 · 418 阅读 · 0 评论