参考:http://www.sohu.com/a/270896638_633698
参考:经典网络复现系列(一):FCN (https://blog.csdn.net/zlrai5895/article/details/80473814)
一、上采样的三种形式
 反卷积和转置卷积还是有差别的,几个常用的深度学习框架tensorflow,keras,torch等中的转置卷积用的是反卷积,所以在深度学习中,反卷积和专职卷积中是一样的。
反卷积和转置卷积还是有差别的,几个常用的深度学习框架tensorflow,keras,torch等中的转置卷积用的是反卷积,所以在深度学习中,反卷积和专职卷积中是一样的。


虽然池化层不可逆,但是我们可以记住池化层中的数值在上一个卷积层中的位置,其余补0即可。

二、跳层结构(Skip-layer)
利用最后又一层特征层(语义特征)直接进行上采样,首先空间信息丢失严重,其次很多细节信息也丢失了,所以,需要和前面的特征进行融合,再作上采样,以此起到精化分割的效果,实验显示FCN-8s效果最优。
 此处的学习率为0的意思指的是,在最后一次做上采样时,使用的是双线性插值的方法。
此处的学习率为0的意思指的是,在最后一次做上采样时,使用的是双线性插值的方法。
三、构建FCN流程




四、FCN的性能


 
                       
                             
                         
                             
                             
                           
                           
                             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   16万+
					16万+
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            