给出一元线性同余方程组:
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪x≡a1x≡a2⋮x≡anmod m1mod m2mod mn
其中 m1,m2,⋯,mn 两两互质。
根据中国剩余定理,则方程组一定有解。
设 M=m1m2⋯mn,Mi=Mmi
则方程在模 M 意义下的唯一解为:
其中 M−1i 为 Mi 模 mi 意义下的数论倒数,即逆元
简略证明(不严谨)如下:
MiM−1i≡1 mod mi
aiMiM−1i≡ai mod mi
aiMiM−1i≡0 mod mj(j!=i)
∴x满足方程
在这里只证明它的正确性,而略去了它的唯一性。
我会在以后补上。