本技术可以解决形如
anTn=bnTn−1+cn
的递归式,
其重点在于利用一个求和的因子来乘两边并转化为一个和式。
我们选取
sn
使得
snbn=sn−1an−1
。
snanTn=snbnTn−1+sncn
然后记 Sn=snanTn ,那么有
Sn=Sn−1+sncnSn=s0a0T0+∑i=1nsici
将 Sn=snanTn 代入可得:
Tn=1snan(s1b1T0+∑i=1nsici)
那么如何选取正确的 sn 呢?
观察 snbn=sn−1an−1 。
会得到
sn=sn−1an−1bn
展开得到:
sn=s1an−1an−2⋯a1bnbn−1⋯b2
当下标大于0时, s1 可以随意选择不为0的任意数。
故 sn 可以轻松求出。