一类递归式的另解

本技术可以解决形如 anTn=bnTn1+cn 的递归式,
其重点在于利用一个求和的因子来乘两边并转化为一个和式。
我们选取 sn 使得 snbn=sn1an1

snanTn=snbnTn1+sncn

然后记 Sn=snanTn ,那么有
Sn=Sn1+sncnSn=s0a0T0+i=1nsici

Sn=snanTn 代入可得:
Tn=1snan(s1b1T0+i=1nsici)

那么如何选取正确的 sn 呢?
观察 snbn=sn1an1
会得到
sn=sn1an1bn

展开得到:
sn=s1an1an2a1bnbn1b2

当下标大于0时, s1 可以随意选择不为0的任意数。
sn 可以轻松求出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值