基础和式知识与运用

和式基本法则:
- 分配律: kKcak=ckKak
- 结合律: kK(ak+bk)=kKak+kKbk
- 交换律: kKak=p(k)Kap(k)
基本运用:
- 等差级数

S=0kna+bk=0nkn(a+b(nk))=0kn(a+bnkb)=120kn(2a+bn)=(n+1)(a+12bn)()()(S)()

有一个重要的思想叫做布尔运算
也有说法叫艾弗森约定。
形如[命题]的式子可以叫做布尔式。
当命题为真时,[命题]=1
当命题为假时,[命题]=0
有一个基本变换: kK=kak[kK]
运用布尔式证明:

kKak+kKak=kKKak+kKKak

首先有
[kK]+[kK]=[kKK]+[kKK]

那么
kKak+kKak=kak[kK]+kak[kK]=kak[kK]+[kK]=

得证

利用preturbation method 计算和式

计算 Sn=0knak
可以这样处理:

Sn+an+1=a0+1kn+1ak

=a0+0knak+1

然后对最后的和式加以处理。
Sn 表示出来,然后就可以解方程来解决。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值