和式基本法则:
- 分配律:
∑k∈Kcak=c∑k∈Kak
- 结合律:
∑k∈K(ak+bk)=∑k∈Kak+∑k∈Kbk
- 交换律:
∑k∈Kak=∑p(k)∈Kap(k)
基本运用:
- 等差级数
S=∑0≤k≤na+bk=∑0≤n−k≤n(a+b(n−k))=∑0≤k≤n(a+bn−kb)=12∑0≤k≤n(2a+bn)=(n+1)(a+12bn)(交换律)(不等式变换)(与S原式相加并运用结合律)(分配律)
有一个重要的思想叫做布尔运算
也有说法叫艾弗森约定。
形如[命题]的式子可以叫做布尔式。
当命题为真时,[命题]=1
当命题为假时,[命题]=0
有一个基本变换: ∑k∈K=∑kak[k∈K]
运用布尔式证明:
∑k∈Kak+∑k∈K′ak=∑k∈K∪K′ak+∑k∈K∩K′ak
首先有[k∈K]+[k∈K′]=[k∈K∪K′]+[k∈K∩K′]
那么∑k∈Kak+∑k∈K′ak=∑kak[k∈K]+∑kak[k∈K′]=∑kak[k∈K]+[k∈K′]=右式
得证
利用preturbation method 计算和式
计算
Sn=∑0≤k≤nak
可以这样处理:
Sn+an+1=a0+∑1≤k≤n+1ak
=a0+∑0≤k≤nak+1
然后对最后的和式加以处理。
用 Sn 表示出来,然后就可以解方程来解决。