每天写一点代码----字符串匹配1(KMP算法)

原作者: 阮一峰

字符串匹配是计算机的基本任务之一。

举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

1.

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

2.

因为B与A不匹配,搜索词再往后移。

3.

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

4.

接着比较字符串和搜索词的下一个字符,还是相同。

5.

直到字符串有一个字符,与搜索词对应的字符不相同为止。

6.

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

7.

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8.

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

9.

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于4,所以将搜索词向后移动4位。

10.

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

11.

因为空格与A不匹配,继续后移一位。

12.

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

13.

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

14.

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

(完)


文档信息


===========================华丽的分割线===========================

 下面给出该算法的Java实现:

package com.liwt.algorithm.pattern;

/**
 * KMP算法的Java实现例子与测试、分析
 * 
 * @author likebamboo
 * @create 2013-10-15
 * @see http://www.ruanyifeng.com/blog/2013/05/Knuth–Morris–Pratt_algorithm.html
 * 
 */

public class KMP {

	/**
	 * 对子串加以预处理,从而找到匹配失败时子串回退的位置 找到匹配失败时的最合适的回退位置,而不是回退到子串的第一个字符,即可提高查找的效率
	 * 因此为了找到这个合适的位置,先对子串预处理,从而得到一个回退位置的数组
	 * 
	 * @param sub
	 *            待处理的子串
	 * @return
	 */
	public static int[] next(String sub) {
		char[] c = sub.toCharArray();
		int length = sub.length();
		int[] p = new int[length];
		p[0] = 0;
		int j = 0;
		// 每循环一次,就会找到一个回退位置
		for (int i = 1; i < length; i++) {
			// 当找到第一个匹配的字符时,即j>0时才会执行这个循环
			// 或者说p2中的j++会在p1之前执行(限于第一次执行的条件下)
			// p1
			while (j > 0 && c[j] != c[i]) {
				j = p[j];
			}
			// p2,由此可以看出,只有当子串中含有重复字符时,回退的位置才会被优化
			if (c[j] == c[i]) {
				j++;
			}
			// 找到一个回退位置j,把其放入P[i]中
			p[i] = j;
		}
		return p;
	}

	/**
	 * KMP实现
	 * 
	 * @param parStr
	 * @param subStr
	 * @return
	 */

	public static void kmp(String parStr, String subStr) {
		int subSize = subStr.length();
		int parSize = parStr.length();
		char[] A = parStr.toCharArray();
		char[] B = subStr.toCharArray();
		int[] P = next(subStr);
		int j = 0;
		int k = 0;
		for (int i = 0; i < parSize; i++) {
			// 当找到第一个匹配的字符时,即j>0时才会执行这个循环
			// 或者说p2中的j++会在p1之前执行(限于第一次执行的条件下)
			// p1
			while (j > 0 && B[j] != A[i]) {
				// 找到合适的回退位置
				j = P[j - 1];
			}
			// p2 找到一个匹配的字符
			if (B[j] == A[i]) {
				j++;
			}
			// 输出匹配结果,并且让比较继续下去
			if (j == subSize) {
				j = P[j - 1];
				k++;
				System.out.printf("Find subString '%s' at %d\n", subStr, i
						- subSize + 1);
			}
		}

		System.out.printf("Totally found %d times for '%s'.\n\n", k, subStr);

	}

	public static void main(String[] args) {
		// next数组为P[0, 0, 0 , 0, 1, 2, 0]
		kmp("BBC ABCDAB ABCDABCDABDE", "ABCDABD");
		// next数组为P[0, 0, 1, 2, 3, 4]
		kmp("Test ititi ititit! Test ititit!这个会匹配2次", "ititit");
		// next数组为P[0, 0, 0]
		kmp("测试汉字的匹配,崔卫兵。这个会匹配1次", "崔卫兵");
		// next数组为P[0, 0, 0, 1, 2, 3, 4, 5, 6]
		kmp("这个会匹配0次", "it1it1it1");
	}
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
BF算法KMP算法都是串的模式匹配算法,但是它们的时间复杂度不同。BF算法的时间复杂度为O(m*n),其中m和n分别为主串和模式串的长度。而KMP算法的时间复杂度为O(m+n)。因此,当模式串较长时,KMP算法的效率更高。 下面是BF算法KMP算法的介绍和演示: 1. BF算法(暴力匹配算法) BF算法是一种朴素的模式匹配算法,它的思想是从主串的第一个字符开始,依次和模式串的每个字符进行比较,如果匹配成功,则继续比较下一个字符,否则从主串的下一个字符开始重新匹配。BF算法的时间复杂度为O(m*n)。 下面是BF算法的Python代码演示: ```python def BF(main_str, pattern_str): m = len(main_str) n = len(pattern_str) for i in range(m-n+1): j = 0 while j < n and main_str[i+j] == pattern_str[j]: j += 1 if j == n: return i return -1 # 测试 main_str = 'ababcabcacbab' pattern_str = 'abcac' print(BF(main_str, pattern_str)) # 输出:6 ``` 2. KMP算法(Knuth-Morris-Pratt算法KMP算法是一种改进的模式匹配算法,它的核心思想是利用已经匹配过的信息,尽量减少模式串与主串的匹配次数。具体来说,KMP算法通过预处理模式串,得到一个next数组,用于指导匹配过程中的跳转。KMP算法的时间复杂度为O(m+n)。 下面是KMP算法的Python代码演示: ```python def KMP(main_str, pattern_str): m = len(main_str) n = len(pattern_str) next = getNext(pattern_str) i = 0 j = 0 while i < m and j < n: if j == -1 or main_str[i] == pattern_str[j]: i += 1 j += 1 else: j = next[j] if j == n: return i - j else: return -1 def getNext(pattern_str): n = len(pattern_str) next = [-1] * n i = 0 j = -1 while i < n-1: if j == -1 or pattern_str[i] == pattern_str[j]: i += 1 j += 1 next[i] = j else: j = next[j] return next # 测试 main_str = 'ababcabcacbab' pattern_str = 'abcac' print(KMP(main_str, pattern_str)) # 输出:6 ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值