数二-导数与微分

导数

*定义

f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=\lim\limits_{x\to x_0}\cfrac{f(x)-f(x_0)}{x-x_0}=\lim\limits_{\varDelta x\to0}\cfrac{f(x_0+\varDelta x)-f(x_0)}{\varDelta x} f(x0)=xx0limxx0f(x)f(x0)=Δx0limΔxf(x0+Δx)f(x0)

例题

设 f ( x ) 连 续 , 且 对 于 任 意 x , y ∈ ( − ∞ , + ∞ ) 有 f ( x + y ) = f ( x ) + f ( y ) + 2 x y , f ′ ( 0 ) = 1 , 求 f ( x ) . 设f(x)连续,且对于任意x,y\in(-\infty,+\infty)有 f(x+y)=f(x)+f(y)+2xy,f'(0)=1,求f(x). f(x)xy(,+)f(x+y)=f(x)+f(y)+2xyf(0)=1,f(x).

解:
由 题 意 易 知 f ( 0 ) = 2 f ( 0 ) , 则 f ( 0 ) = 0. 由题意易知f(0)=2f(0),则f(0)=0. f(0)=2f(0)f(0)=0.

f ′ ( x 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ Δ x → 0 f ( x 0 ) + f ( Δ x ) + 2 x 0 Δ x − f ( x 0 ) Δ x = lim ⁡ Δ x → 0 [ f ( Δ x ) − f ( 0 ) Δ x + 2 x 0 ] = f ′ ( 0 ) + 2 x 0 = 2 x 0 + 1 \begin{aligned} f'(x_0)=&\lim\limits_{\varDelta x\to 0}\cfrac{f(x_0+\varDelta x)-f(x_0)}{\varDelta x}\\ =&\lim\limits_{\varDelta x\to0}\cfrac{f(x_0)+f(\varDelta x)+2x_0\varDelta x-f(x_0)}{\varDelta x}\\ =&\lim\limits_{\varDelta x\to0}\bigg[\cfrac{f(\varDelta x)-f(0)}{\varDelta x}+2x_0\bigg]\\ =&f'(0)+2x_0\\ =&2x_0+1 \end{aligned} f(x0)=====Δx0limΔxf(x0+Δx)f(x0)Δx0limΔxf(x0)+f(Δx)+2x0Δxf(x0)Δx0lim[Δxf(Δx)f(0)+2x0]f(0)+2x02x0+1

∴ f ′ ( x ) = 2 x + 1 \therefore f'(x)=2x+1 f(x)=2x+1

∴ f ( x ) = x 2 + x + C \therefore f(x)=x^2+x+C f(x)=x2+x+C

又 ∵ f ( 0 ) = 0 又\because f(0)=0 f(0)=0

f ( x ) = x 2 + x f(x)=x^2+x f(x)=x2+x

基础

基础数值

  • e = 2.7 … e=2.7\dots e=2.7
  • 2 = 1.414 … \sqrt{2}=1.414\dots 2 =1.414
  • 3 = 1.732 … \sqrt{3}=1.732\dots 3 =1.732
  • 3 3 = 1.44 … \sqrt[3]{3}=1.44\dots 33 =1.44
  • ∫ 0 π sin ⁡ x = 2 \int_0^\pi\sin x=2 0πsinx=2

标根穿线

A x m a x , A > 0 , 从 右 上 开 始 画 , 遵 循 “ 奇 穿 偶 不 穿 ” 的 原 则 , A < 0 , 则 从 右 下 开 始 画 。 Ax^{max},A>0,从右上开始画,遵循“奇穿偶不穿”的原则,A<0,则从右下开始画。 Axmax,A>0,穿穿A<0
在这里插入图片描述

基本公式

{ ( x a ) ′ = a x a − 1 { ( x ) ′ = 1 2 x ( 1 x ) ′ = − 1 x 2 ( a x ) ′ = a x ln ⁡ ( a ) ; ( e x ) ′ = e x ( log ⁡ a x ) ′ = 1 x ln ⁡ ( a ) ; ( ln ⁡ x ) ′ = 1 x ( sin ⁡ x ) ′ = cos ⁡ x ; ( cos ⁡ x ) ′ = − sin ⁡ x ; ( tan ⁡ x ) ′ = sec ⁡ 2 x ( cot ⁡ x ) ′ = − csc ⁡ 2 x ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x ( arcsin ⁡ x ) ′ = 1 1 − x 2 ( arccos ⁡ x ) ′ = − 1 1 − x 2 ( arctan ⁡ x ) ′ = 1 1 + x 2 ( a r c c o t x ) ′ = − 1 1 + x 2 \begin{cases} (x^a)^{'}=ax^{a-1}\begin{cases} (\sqrt{x})^{'}=\cfrac{1}{2\sqrt{x}}\\ (\cfrac{1}{x})^{'}=-\cfrac{1}{x^2} \end{cases}\\ (a^x)^{'}=a^x\ln(a);(e^x)^{'}=e^x\\ (\log_ax)^{'}=\cfrac{1}{x\ln(a)};(\ln x)^{'}=\cfrac{1}{x}\\ (\sin x)^{'}=\cos x; \\ (\cos x)^{'}=-\sin x;\\ (\tan x)^{'}=\sec^2x\\ (\cot x)^{'}=-\csc^2x\\ (\sec x)^{'}=\sec x\tan x\\ (\csc x)^{'}=-\csc x\cot x\\ (\arcsin x)^{'}=\cfrac{1}{\sqrt{1-x^2}}\\ (\arccos x)^{'}=-\cfrac{1}{\sqrt{1-x^2}}\\ (\arctan x)^{'}=\cfrac{1}{1+x^2}\\ (arccot x)^{'}=-\cfrac{1}{1+x^2} \end{cases} (xa)=axa1(x )=2x 1(x1)=x21(ax)=axln(a);(ex)=ex(logax)=xln(a)1;(lnx)=x1(sinx)=cosx;(cosx)=sinx;(tanx)=sec2x(cotx)=csc2x(secx)=secxtanx(cscx)=cscxcotx(arcsinx)=1x2 1(arccosx)=1x2 1(arctanx)=1+x21(arccotx)=1+x21

导数微分四则

[ u ( x ) + v ( x ) ] ′ = u ( x ) ′ + v ( x ) ′        d [ u ( x ) + v ( x ) ] = d [ u ( x ) ] + d [ v ( x ) ] [ u ( x ) v ( x ) ] ′ = u ( x ) ′ v ( x ) + u ( x ) v ( x ) ′        d [ u ( x ) v ( x ) ] = d [ u ( x ) ] v ( x ) + u ( x ) d [ v ( x ) ] [ u 1 ( x ) u 2 ( x ) … u n ( x ) ] ′ = u 1 ( x ) ′ u 2 ( x ) … u n ( x ) + u 1 ( x ) u 2 ( x ) ′ … u n ( x ) + u 1 ( x ) u 2 ( x ) … u n ( x ) ′ [ u ( x ) v ( x ) ] ′ = u ( x ) ′ v ( x ) − u ( x ) v ( x ) ′ v ( x ) 2 d [ u ( x ) v ( x ) ] = d [ u ( x ) ] v ( x ) − u ( x ) d [ v ( x ) ] v ( x ) 2 [u(x) +v(x)]^{'} = u(x)^{'} + v(x)^{'}\ \ \ \ \ \ d[u(x) +v(x)] = d[u(x)] + d[v(x)]\\ [u(x)v(x)]^{'}=u(x)^{'}v(x)+u(x)v(x)^{'}\ \ \ \ \ \ d[u(x)v(x)]=d[u(x)]v(x)+u(x)d[v(x)]\\ [u_1(x)u_2(x)\dots u_n(x)]^{'}=u_1(x)^{'}u_2(x)\dots u_n(x)+u_1(x)u_2(x)^{'}\dots u_n(x)+u_1(x)u_2(x)\dots u_n(x)^{'}\\ \bigg[\cfrac{u(x)}{v(x)}\bigg]^{'}=\cfrac{u(x)^{'}v(x)-u(x)v(x)^{'}}{v(x)^2}\\ d\bigg[\cfrac{u(x)}{v(x)}\bigg]=\cfrac{d[u(x)]v(x)-u(x)d[v(x)]}{v(x)^2} [u(x)+v(x)]=u(x)+v(x)      d[u(x)+v(x)]=d[u(x)]+d[v(x)][u(x)v(x)]=u(x)v(x)+u(x)v(x)      d[u(x)v(x)]=d[u(x)]v(x)+u(x)d[v(x)][u1(x)u2(x)un(x)]=u1(x)u2(x)un(x)+u1(x)u2(x)un(x)+u1(x)u2(x)un(x)[v(x)u(x)]=v(x)2u(x)v(x)u(x)v(x)d[v(x)u(x)]=v(x)2d[u(x)]v(x)u(x)d[v(x)]

高阶导数

{ 归 纳 法 莱 布 尼 兹 公 式 泰 勒 展 开 式 \begin{cases} 归纳法\\ 莱布尼兹公式\\ 泰勒展开式 \end{cases}

归纳法

例: y = ln ⁡ ( 2 x − 1 ) 求 : y ( n ) y = \ln(2x-1) 求: y^{(n)} y=ln(2x1)y(n)

y ′ = 2 ∗ ( 2 x − 1 ) − 1 y ′ ′ = 2 ∗ 2 ∗ ( − 1 ) ∗ ( 2 x − 1 ) − 2 … y ( n ) = 2 n ∗ ( − 1 ) n − 1 ∗ ( n − 1 ) ! ( 2 x − 1 ) n y^{'}=2*(2x-1)^{-1}\\ y^{''}=2*2*(-1)*(2x-1)^{-2}\\ \dots\\ y^{(n)}=\cfrac{2^n*(-1)^{n-1}*(n-1)!}{(2x-1)^{n}} y=2(2x1)1y=22(1)(2x1)2y(n)=(2x1)n2n(1)n1(n1)!

莱布尼兹公式

例: y = x 2 ln ⁡ ( 1 + x ) 求 : y ( 8 ) y=x^2\ln(1+x) 求:y^{(8)} y=x2ln(1+x)y(8)

y ( 8 ) = C 8 0 x 2 ∗ ln ⁡ ( 1 + x ) ( 8 ) + C 8 1 2 x ∗ ln ⁡ ( 1 + x ) ( 7 ) + C 8 2 2 ∗ ln ⁡ ( 1 + x ) ( 6 ) ln ⁡ ( x + 1 ) ( 6 ) = ( − 1 ) 5 ∗ 5 ! ( x + 1 ) 6 ln ⁡ ( x + 1 ) ( 7 ) = ( − 1 ) 6 ∗ 6 ! ( x + 1 ) 7 ln ⁡ ( x + 1 ) ( 8 ) = ( − 1 ) 7 ∗ 7 ! ( x + 1 ) 8 y^{(8)}=C^{\tiny 0}_{\tiny 8}x^2*\ln(1+x)^{(8)}\\ +C^{\tiny 1}_{\tiny 8}2x*\ln(1+x)^{(7)}\\ +C^{\tiny 2}_{\tiny 8}2*\ln(1+x)^{(6)}\\ \ln(x+1)^{(6)}=\cfrac{(-1)^5*5!}{(x+1)^6}\\ \ln(x+1)^{(7)}=\cfrac{(-1)^6*6!}{(x+1)^7}\\ \ln(x+1)^{(8)}=\cfrac{(-1)^7*7!}{(x+1)^8} y(8)=C80x2ln(1+x)(8)+C812xln(1+x)(7)+C822ln(1+x)(6)ln(x+1)(6)=(x+1)6(1)55!ln(x+1)(7)=(x+1)7(1)66!ln(x+1)(8)=(x+1)8(1)77!

⋆ \star 泰勒展开式

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R ( x n ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\cfrac{f''(x_0)}{2!}(x-x_0)^2+\dots+\cfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R(x^n) f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n+R(xn)
根据展开式的唯一性,通过比较 ( x − x 0 ) n (x-x_0)^n (xx0)n 的系数,得到 f ( n ) ( x 0 ) f^{(n)}(x_0) f(n)(x0).

例: f ( x ) = ( x − 1 ) 5 e − x , 求 f ( 10 ) ( 1 ) f(x)=(x-1)^5e^{-x},求 f^{(10)}(1) f(x)=(x1)5exf(10)(1)

  1. f(x)展开式 ( x − 1 ) 10 (x-1)^{10} (x1)10 的系数= f ( 10 ) ( 1 ) 10 ! \cfrac{f^{(10)}(1)}{10!} 10!f(10)(1)
  2. ( x − 1 ) 5 ∗ e − x 展 开 式 = ( x − 5 ) 10 , ( e − x 0 ) ( 5 ) 5 ! ( x − x 0 ) 5 ∣ x 0 = 1 = − e − 1 5 ! ( x − 1 ) 5 (x-1)^5*e^{-x}展开式= (x-5)^{10},\cfrac{(e^{-x_0})^{(5)}}{5!}(x-x_0)^5\bigg|_{x_0=1}=\cfrac{-e^{-1}}{5!}(x-1)^5 (x1)5ex=(x5)105!(ex0)(5)(xx0)5x0=1=5!e1(x1)5
  3. − e − 1 5 ! = f ( 10 ) ( 1 ) 10 !      ∴ f ( 10 ) ( 1 ) = − 10 !   e − 1 5 ! \cfrac{-e^{-1}}{5!}=\cfrac{f^{(10)}(1)}{10!}\ \ \ \ \therefore f^{(10)}(1)=-\cfrac{10!\ e^{-1}}{5!} 5!e1=10!f(10)(1)    f(10)(1)=5!10! e1

隐式函数求导数

  1. 等式两边同时对x求导
  2. d y d x = − F x ′ F y ′ \cfrac{dy}{dx}=-\cfrac{F'_x}{F'_y} dxdy=FyFx

例: 2 x y = x 2 + y + 1 求 : d y d x ∣ x = 0 2^{xy}=x^2+y+1 求:\cfrac{dy}{dx}\bigg|_{x=0} 2xy=x2+y+1dxdyx=0

x = 0 → y = 0 2 x y ∗ ln ⁡ 2 ∗ ( y + x d y d x ) = 2 x + d y d x 当 x = 0 , y = 0 时 , d y d x = 0 x=0\to y=0\\ 2^{xy}*\ln2*(y+x\cfrac{dy}{dx})=2x+\cfrac{dy}{dx}\\ 当x=0,y=0时,\cfrac{dy}{dx}=0 x=0y=02xyln2(y+xdxdy)=2x+dxdyx=0,y=0dxdy=0

例: arctan ⁡ y x = 1 2 ln ⁡ ( x 2 + y 2 ) 求 : d y d x \arctan \cfrac{y}{x}=\cfrac{1}{2}\ln(x^2+y^2) 求:\cfrac{dy}{dx} arctanxy=21ln(x2+y2)dxdy

1 1 + ( y x ) 2 ∗ d y d x x − y x 2 = 1 2 ∗ 2 x + 2 y d y d x x 2 + y 2 \cfrac{1}{1+\big(\cfrac{y}{x}\big)^2}*\cfrac{\cfrac{dy}{dx}x-y}{x^2}=\cfrac{1}{2}*\cfrac{2x+2y\cfrac{dy}{dx}}{x^2+y^2} 1+(xy)21x2dxdyxy=21x2+y22x+2ydxdy
d y d x x − y = x + y d y d x \cfrac{dy}{dx}x-y=x+y\cfrac{dy}{dx} dxdyxy=x+ydxdy
d y d x = x + y x − y \cfrac{dy}{dx}=\cfrac{x+y}{x-y} dxdy=xyx+y

例: { x = ln ⁡ ( 1 + t 2 ) y = arctan ⁡ t 求 d y d x \begin{cases} x=\ln(1+t^2)\\ y=\arctan t \end{cases} 求\cfrac{dy}{dx} {x=ln(1+t2)y=arctantdxdy

d y d x = 1 1 + t 2 2 t 1 + t 2 = 1 2 t \cfrac{dy}{dx}=\cfrac{\cfrac{1}{1+t^2}}{\cfrac{2t}{1+t^2}}=\cfrac{1}{2t} dxdy=1+t22t1+t21=2t1

隐函数二阶导数

{ x = Φ ( t ) y = Ψ ( t ) Ψ ( t ) , Φ ( t ) 二 阶 可 导 , 且 Φ ( t ) ′ ≠ 0 \begin{cases} x=\varPhi(t)\\ y=\varPsi(t) \end{cases}\varPsi(t),\varPhi(t)二阶可导,且\varPhi(t)^{'}\neq0 {x=Φ(t)y=Ψ(t)Ψ(t),Φ(t)Φ(t)=0
d 2 y d x 2 = d [ Ψ ( t ) ′ Φ ( t ) ′ ] d x = d d t [ Ψ ( t ) ′ Φ ( t ) ′ ] d x d t = [ Ψ ( t ) ′ Φ ( t ) ′ ] ′ Φ ( t ) ′ = Ψ ( t ) ′ ′ Φ ( t ) ′ − Φ ( t ) ′ ′ Ψ ( t ) ′ [ Φ ( t ) ′ ] 3 \cfrac{d^2y}{dx^2}=\cfrac{d[\cfrac{\varPsi(t)^{'}}{\varPhi(t)^{'}}]}{dx}=\cfrac{\cfrac{d}{dt}[\cfrac{\varPsi(t)^{'}}{\varPhi(t)^{'}}]}{\cfrac{dx}{dt}}=\cfrac{[\cfrac{\varPsi(t)^{'}}{\varPhi(t)^{'}}]^{'}}{\varPhi(t)^{'}}=\cfrac{\varPsi(t)''\varPhi(t)'-\varPhi(t)''\varPsi(t)'}{[\varPhi(t)^{'}]^3} dx2d2y=dxd[Φ(t)Ψ(t)]=dtdxdtd[Φ(t)Ψ(t)]=Φ(t)[Φ(t)Ψ(t)]=[Φ(t)]3Ψ(t)Φ(t)Φ(t)Ψ(t)

例: { x = t − sin ⁡ t y = 1 − cos ⁡ t 求 d 2 y d x 2 \begin{cases} x=t-\sin t\\ y=1-\cos t \end{cases}求\cfrac{d^2y}{dx^2} {x=tsinty=1costdx2d2y

d y d x = sin ⁡ t 1 − c o s d 2 y d x 2 = [ sin ⁡ t 1 − cos ⁡ t ] ′ 1 − cos ⁡ t = cos ⁡ t ( 1 − cos ⁡ t ) − sin ⁡ 2 t ( 1 − cos ⁡ t ) 2 1 − cos ⁡ t = − 1 ( 1 − cos ⁡ t ) 2 \cfrac{dy}{dx}=\cfrac{\sin t}{1-cos}\\ \cfrac{d^2y}{dx^2}=\cfrac{[\cfrac{\sin t}{1-\cos t}]^{'}}{1-\cos t}=\cfrac{\cfrac{\cos t(1-\cos t)-\sin^2 t}{(1-\cos t)^2}}{1-\cos t}=\\-\cfrac{1}{(1-\cos t)^2} dxdy=1cossintdx2d2y=1cost[1costsint]=1cost(1cost)2cost(1cost)sin2t=(1cost)21

反函数求导

f ′ ( x ) = 1 φ ′ ( y )       d y d x = 1 d x d y f^{'}(x)=\cfrac{1}{\varphi^{'}(y)}\ \ \ \ \ \cfrac{dy}{dx}=\cfrac{1}{\tiny\cfrac{dx}{dy}} f(x)=φ(y)1     dxdy=dydx1

反函数二阶导数

f ′ ′ ( x ) = d 2 y d x 2 = d ( d y d x ) d x = d ( 1 x y ′ ) d x = d ( 1 x y ′ ) d y ∗ d y d x = − x y ′ ′ x y ′ 2 1 x y ′ = − x y ′ ′ x y ′ 3 f^{''}(x)=\cfrac{d^2y}{dx^2}=\cfrac{d(\cfrac{dy}{dx})}{dx}=\cfrac{d(\cfrac{1}{x'_y})}{dx}=\cfrac{d(\cfrac{1}{x'_y})}{dy}*\cfrac{dy}{dx}=-\cfrac{x''_y}{{x'_{y}}^2}\cfrac{1}{x'_y}=-\cfrac{x''_y}{{x'_{y}}^3} f(x)=dx2d2y=dxd(dxdy)=dxd(xy1)=dyd(xy1)dxdy=xy2xyxy1=xy3xy
{ y x ′ ′ = − x y ′ ′ x y ′ 3 x y ′ ′ = − y x ′ ′ y x ′ 3 \begin{cases} y''_x=-\cfrac{x''_y}{{x'_{y}}^3}\\ x''_y=-\cfrac{y''_x}{{y'_{x}}^3} \end{cases} yx=xy3xyxy=yx3yx

重点

基础推论

  • 若 f ( x ) 在 x = x 0 处 连 续 , 且 lim ⁡ x → x 0 f ( x ) x − x 0 = A ( 存 在 ) , 则 f ( x 0 ) = 0 且 f ′ ( x 0 ) = A . 若f(x)在x=x_0处连续,且\lim\limits_{x\to x_0}\cfrac{f(x)}{x-x_0}=A(存在),则f(x_0)=0且f^{'}(x_0)=A. f(x)x=x0xx0limxx0f(x)=A,f(x0)=0f(x0)=A.
  • f ( x ) 在 x = x 0 处 二 阶 可 导 , 且 f ′ ( x 0 ) = 0 , f ′ ′ ( x 0 ) ≠ 0 , 则 在 x = x 0 有 极 值 . f(x)在x=x_0处二阶可导,且f'(x_0)=0,f''(x_0)\neq0,则在x=x_0有极值. f(x)x=x0f(x0)=0,f(x0)=0x=x0.
  • f ( x ) 在 x = x 0 的 某 邻 域 内 三 阶 可 导 , 且 f ′ ’ ( x 0 ) = 0 , f ‘ ′ ′ ( x 0 ) ≠ 0 , 则 ( x 0 , f ( x 0 ) ) 为 拐 点 . f(x)在x=x_0的某邻域内三阶可导,且f'’(x_0)=0,f‘''(x_0)\neq0,则 (x_0,f(x_0))为拐点. f(x)x=x0f(x0)=0,f(x0)=0(x0,f(x0)).

复合函数求导

f [ g ( x ) ] ′ = d { f [ g ( x ) ] } d x        f ′ [ g ( x ) ] = d { f [ g ( x ) ] } d [ g ( x ) ] f[g(x)]^{'}=\cfrac{d\{f[g(x)]\}}{dx}\ \ \ \ \ \ f^{'}[g(x)]=\cfrac{d\{f[g(x)]\}}{d[g(x)]} f[g(x)]=dxd{f[g(x)]}      f[g(x)]=d[g(x)]d{f[g(x)]}

求导公式拓展

[ ln ⁡ ∣ f ( x ) ∣ ] ′ = f ′ ( x ) f ( x ) [\ln|f(x)|]'=\cfrac{f'(x)}{f(x)} [lnf(x)]=f(x)f(x)

[ ln ⁡ ( x + x 2 + A ) ] ′ = 1 x 2 + A [\ln(x+\sqrt{x^2+A})]'=\cfrac{1}{\sqrt{x^2+A}} [ln(x+x2+A )]=x2+A 1

( x − a x + a ) ′ = − 2 a ( x + a ) 2 \big(\cfrac{x-a}{x+a}\big)'=\cfrac{-2a}{(x+a)^2} (x+axa)=(x+a)22a

( x + a x − a ) ′ = 2 a ( x − a ) 2 \big(\cfrac{x+a}{x-a}\big)'=\cfrac{2a}{(x-a)^2} (xax+a)=(xa)22a


微分

*定义

增 量 Δ y = f ( x + Δ x 0 ) − f ( x ) , 若 存 在 与 Δ x 无 关 的 常 数 使 得 Δ y = A Δ x + o ( x ) , A Δ x 增量\varDelta y=f(x+\varDelta x_0)-f(x),若存在与\varDelta x无关的常数使得\varDelta y=A\varDelta x+o(x),A\varDelta x Δy=f(x+Δx0)f(x)Δx使Δy=AΔx+o(x)AΔx称为线性主部 , o ( x ) 为 误 差 , 称 f ( x ) 在 x 0 处 可 微 , 并 称 A Δ x 为 f ( x ) 在 x 0 处 的 微 分 。 ,o(x)为误差,称f(x)在x_0处可微,并称A\varDelta x为f(x)在x_0处的微分。 o(x)f(x)x0AΔxf(x)x0

d y ∣ x = x 0 = A Δ x = f ′ ( x 0 ) Δ x = f ′ ( x 0 ) d x \begin{aligned} dy|_{x=x_0}&=A \varDelta x \\ &=f^{'}(x_0) \varDelta x\\ &=f^{'}(x_0) dx\\ \end{aligned} dyx=x0=AΔx=f(x0)Δx=f(x0)dx

注意

df(x)问题

  • 题目为求 d f ( x ) df(x) df(x),注意结果为g(x) dx形式

一阶微分形式不变

d f ( ■ ) = f ′ ( ■ ) d ■ df(\blacksquare)=f^{'}(\blacksquare)d\blacksquare df()=f()d

积分求导公式

f ( x ) = ∫ h ( x ) g ( x ) f ( t ) d t f(x)=\displaystyle\int_{h(x)}^{g(x)}f(t)dt f(x)=h(x)g(x)f(t)dt

f ′ ( x ) = g ′ ( x ) f [ g ( x ) ] − h ′ ( x ) f [ h ( x ) ] f'(x)=g'(x)f[g(x)]-h'(x)f[h(x)] f(x)=g(x)f[g(x)]h(x)f[h(x)]

例题

f ( x ) = ∫ 0 1 ∣ x − y ∣ sin ⁡ y d y ( 0 < x < 1 ) , 求 f ′ ′ ( x ) f(x)=\displaystyle\int_0^1|x-y|\sin\sqrt{y}dy (0\lt x\lt1),求f''(x) f(x)=01xysiny dy(0<x<1)f(x)

解:
f ( x ) = ∫ 0 x ( x − y ) sin ⁡ y d y + ∫ x 1 ( y − x ) sin ⁡ y d y = x ∫ 0 x sin ⁡ y d y − ∫ 0 x y sin ⁡ y d y + ∫ x 1 y sin ⁡ y d y − x ∫ x 1 sin ⁡ y d y \begin{aligned} f(x)=&\displaystyle\int_0^x(x-y)\sin\sqrt{y}dy+\displaystyle\int_x^1(y-x)\sin\sqrt{y}dy\\ =&x\displaystyle\int_0^x\sin\sqrt{y}dy-\displaystyle\int_0^xy\sin\sqrt{y}dy+\displaystyle\int_x^1y\sin\sqrt{y}dy-x\displaystyle\int_x^1\sin\sqrt{y}dy\\ \end{aligned} f(x)==0x(xy)siny dy+x1(yx)siny dyx0xsiny dy0xysiny dy+x1ysiny dyxx1siny dy
f ′ ( x ) = ∫ 0 x sin ⁡ y d y − ∫ x 1 sin ⁡ y d y f'(x)=\displaystyle\int_0^x\sin\sqrt{y}dy-\displaystyle\int_x^1\sin\sqrt{y}dy f(x)=0xsiny dyx1siny dy

f ′ ′ ( x ) = 2 sin ⁡ x f''(x)=2\sin\sqrt{x} f(x)=2sinx

函数图像性质

极大值极小值判定

注意:在x处取极值,并不需要保证在x点处的函数状态。

  1. 求函数的二阶导数,将极值点代入,二级导数值>0, 为极小值点,反之为极大值点

  2. 判断极值点左右邻域的导数值的正负:左+右- 为极大值点,左-右+ 为极小值点,左右正负不变,不是极值点。

  3. ⋆ f ( x ) 在 x = x 0 处 二 阶 可 导 , 且 f ′ ( x 0 ) = 0 , f ′ ′ ( x 0 ) ≠ 0 , 则 f ′ ′ ( x 0 ) < 0 , f ( x ) 在 x = x 0 处 取 极 大 值 , f ′ ′ ( x 0 ) > 0 , f ( x ) 在 x = x 0 处 取 极 小 值 。 \star f(x)在x=x_0处二阶可导,且f'(x_0)=0,f''(x_0)\neq0,则f''(x_0)\lt0,f(x)在x=x_0处取极大值,f''(x_0)\gt0,f(x)在x=x_0处取极小值。 f(x)x=x0f(x0)=0,f(x0)=0,f(x0)<0f(x)x=x0f(x0)>0f(x)x=x0

拐点

  • 连续曲线 凹弧与凸弧的分界点,写作 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))
  • ⋆ f ( x ) 在 x = x 0 处 三 阶 可 导 , 且 f ′ ( x 0 ) = 0 , f ′ ′ ( x 0 ) ≠ 0 , 则 ( x 0 , f ( x 0 ) ) 为 拐 点 。 \star f(x)在x=x_0处三阶可导,且f'(x_0)=0,f''(x_0)\neq0,则(x_0,f(x_0))为拐点。 f(x)x=x0f(x0)=0,f(x0)=0,(x0,f(x0))

驻点

一阶导数为零。

渐近线

  • 铅锤渐近线
    lim ⁡ x → x 0 + f ( x ) = ∞ 或 lim ⁡ x → x 0 − f ( x ) = ∞ , 则 x = x 0 为 一 条 铅 锤 渐 近 线 \lim\limits_{x\to {x_0}^+}f(x)=\infty或\lim\limits_{x\to {x_0}^-}f(x)=\infty,则x=x_0为一条铅锤渐近线 xx0+limf(x)=xx0limf(x)=x=x0线
  • 水平渐近线
    若 lim ⁡ x → + ∞ f ( x ) = y 1 , 则 y = y 1 为 一 条 水 平 渐 近 线 ; 若 lim ⁡ x → − ∞ f ( x ) = y 2 , 则 y = y 2 为 一 条 水 平 渐 近 线 若\lim\limits_{x\to +\infty}f(x)=y_1,则y=y_1为一条水平渐近线;\\ 若\lim\limits_{x\to -\infty}f(x)=y_2,则y=y_2为一条水平渐近线 x+limf(x)=y1y=y1线xlimf(x)=y2y=y2线
  • 斜渐近线
    若 lim ⁡ x → − ∞ f ( x ) x = k 1 , lim ⁡ x → − ∞ [ f ( x ) − k 1 x ] = b 1 , 则 y = k 1 x + b 1 是 y = f ( x ) 的 一 条 斜 渐 近 线 ; 若 lim ⁡ x → + ∞ f ( x ) x = k 2 , lim ⁡ x → + ∞ [ f ( x ) − k 2 x ] = b 2 , 则 y = k 2 x + b 2 是 y = f ( x ) 的 一 条 斜 渐 近 线 ; 若\lim\limits_{x\to -\infty}\cfrac{f(x)}{x}=k_1, \lim\limits_{x\to -\infty}[f(x)-k_1x]=b_1, 则y=k_1x+b_1是y=f(x)的一条斜渐近线;\\ 若\lim\limits_{x\to +\infty}\cfrac{f(x)}{x}=k_2, \lim\limits_{x\to +\infty}[f(x)-k_2x]=b_2, 则y=k_2x+b_2是y=f(x)的一条斜渐近线; xlimxf(x)=k1,xlim[f(x)k1x]=b1,y=k1x+b1y=f(x)线x+limxf(x)=k2,x+lim[f(x)k2x]=b2,y=k2x+b2y=f(x)线

已知: lim ⁡ x → ∞ [ f ( x ) − ( k x + b ) ] = 0 \lim\limits_{x\to \infty}[f(x)-(kx+b)]=0 xlim[f(x)(kx+b)]=0
lim ⁡ x → ∞ f ( x ) − ( k x + b ) x = 0 \lim\limits_{x\to \infty}\cfrac{f(x)-(kx+b)}{x}=0 xlimxf(x)(kx+b)=0
得: lim ⁡ x → ∞ f ( x ) x = k \lim\limits_{x\to \infty}\cfrac{f(x)}{x}=k xlimxf(x)=k
lim ⁡ x → ∞ [ f ( x ) − k x ] = b \lim\limits_{x\to \infty}[f(x)-kx]=b xlim[f(x)kx]=b

最值或取值范围

  1. 闭区间连续函数,必有最大值最小值。
  2. 求 f ′ ( x ) 不 存 在 , f ′ ( x ) = 0 的 点 , 端 点 , 比 较 大 小 求f'(x)不存在,f'(x)=0的点,端点,比较大小 f(x)f(x)=0,

曲率与与曲率半径

  • 曲 率 k = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 2 曲率 k=\cfrac{|y''|}{[1+(y')^2]^{\tiny\cfrac{3}{2}}} k=[1+(y)2]23y
  • 曲 率 半 径 R = 1 k 曲率半径R=\cfrac{1}{k} R=k1

曲率泰勒综合题

求 曲 线 y = ln ⁡ x 上 曲 率 最 大 的 点 , 并 在 该 点 处 用 抛 物 线 y = a x 2 + b x + c 近 似 代 替 y = ln ⁡ x , 求 a , b , c 求曲线y=\ln x上曲率最大的点,并在该点处用抛物线 y=ax^2+bx+c近似代替y=\ln x,求a,b,c 线y=lnx线y=ax2+bx+cy=lnx,a,b,c

y ′ = 1 x     y ′ ′ = − 1 x 2 y'=\cfrac{1}{x}\ \ \ y''=-\cfrac{1}{x^2} y=x1   y=x21
k = y ′ ′ [ 1 + ( y ′ ) 2 ] 3 2 = x ( x 2 + 1 ) 2 3 \begin{aligned} k=&\cfrac{y''}{[1+(y')^2]^{\tiny\cfrac{3}{2}}}\\ =&\cfrac{x}{(x^2+1)^{\tiny\cfrac{2}{3}}} \end{aligned} k==[1+(y)2]23y(x2+1)32x
令 f ( x ) = x ( x 2 + 1 ) 2 3 f ′ ( x ) = 1 − 2 x 2 ( x 2 + 1 ) 5 2 令 f ′ ( x ) = 0 , 则 x = 2 2 , x > 0 y = ln ⁡ x 在 x = 2 2 处 的 泰 勒 展 开 式 为 : y = ln ⁡ 2 2 + 2 ( x − 2 2 ) − 2 ( x − 2 2 ) 2 + o ( x 2 ) ∵ 抛 物 线 y = a x 2 + b x + c ∴ a = − 1 , b = 2 2 , c = − 1 2 ln ⁡ 2 − 3 2 令f(x)=\cfrac{x}{(x^2+1)^{\tiny\cfrac{2}{3}}}\\ f'(x)=\cfrac{1-2x^2}{(x^2+1)^{\tiny\cfrac{5}{2}}}\\ 令f'(x)=0,则x=\cfrac{\sqrt{2}}{2},x\gt0\\ y=\ln x在x=\cfrac{\sqrt{2}}{2}处的泰勒展开式为:\\ y=\ln{\cfrac{\sqrt{2}}{2}}+\sqrt{2}(x-\cfrac{\sqrt{2}}{2})-2(x-\cfrac{\sqrt{2}}{2})^2+o(x^2)\\ \because 抛物线y=ax^2+bx+c\\ \therefore a=-1,b=2\sqrt{2},c=-\cfrac{1}{2}\ln2-\cfrac{3}{2} f(x)=(x2+1)32xf(x)=(x2+1)2512x2f(x)=0x=22 ,x>0y=lnxx=22 :y=ln22 +2 (x22 )2(x22 )2+o(x2)线y=ax2+bx+ca=1,b=22 ,c=21ln223

相关变化率

题知 d A d C , d C d B , 求 d A d B = d A d C ∗ d C d B \cfrac{dA}{dC},\cfrac{dC}{dB},求\cfrac{dA}{dB}=\cfrac{dA}{dC}*\cfrac{dC}{dB} dCdAdBdCdBdA=dCdAdBdC

半 径 为 1 2 的 圆 在 抛 物 线 x = y 凹 的 一 侧 上 滚 动 。 半径为\cfrac{1}{2}的圆在抛物线 x=\sqrt{y} 凹的一侧上滚动。 21线x=y

  1. 求 圆 心 ( ξ , η ) 的 轨 迹 方 程 。 求圆心 (\xi,\eta) 的轨迹方程。 (ξ,η)
  2. 当 圆 心 以 速 率 V 0 匀 速 上 升 时 , 求 圆 心 的 横 坐 标 ξ 的 增 长 率 。 当圆心以速率V_0匀速上升时,求圆心的横坐标\xi的增长率。 V0ξ

解 : ( 1 )   y ′ = 2 x , 法 线 斜 率 k = − 1 2 x 令 P ( x , x 2 ) 为 圆 与 抛 物 线 相 交 的 点 , 得 切 线 l : Y − x 2 = − 1 2 x ( X − x ) ( ξ , η ) 带 入 得 : η − x 2 = − 1 2 x ( ξ − x ) … … ① ∵ ( ξ , η ) 到 P 的 距 离 为 1 2 解:\\ (1)\ y'=2x, 法线斜率k=-\cfrac{1}{2x}\\ 令P(x,x^2)为圆与抛物线相交的点,得切线l:\\ Y-x^2=-\cfrac{1}{2x}(X-x)\\ (\xi,\eta)带入得:\eta-x^2=-\cfrac{1}{2x}(\xi-x)\dots\dots①\\ \because (\xi,\eta)到P的距离为\cfrac{1}{2} :(1) y=2x,线k=2x1P(x,x2)线,线l:Yx2=2x1(Xx)(ξ,η):ηx2=2x1(ξx)(ξ,η)P21

∴ ( x − ξ ) 2 + ( x 2 − η ) 2 = 1 4 … … ② 由 ① ② 得 : ξ = x − x 1 + 4 x 2      η = 1 2 1 + 4 x 2 + x 2 ( 2 )   d ξ d t = d ξ d η ∗ d η d t = V 0 2 x \therefore (x-\xi)^2+(x^2-\eta)^2=\cfrac{1}{4}\dots\dots②\\ 由①②得:\\ \xi=x-\cfrac{x}{\sqrt{1+4x^2}}\ \ \ \ \eta=\cfrac{1}{2\sqrt{1+4x^2}}+x^2\\ (2)\ \cfrac{d\xi}{dt}=\cfrac{d\xi}{d\eta}*\cfrac{d\eta}{dt}=\cfrac{V_0}{2x} (xξ)2+(x2η)2=41:ξ=x1+4x2 x    η=21+4x2 1+x2(2) dtdξ=dηdξdtdη=2xV0

弧微分

d s d θ = d x 2 + d y 2 d θ \cfrac{ds}{d\theta}=\cfrac{\sqrt{dx^2+dy^2}}{d\theta} dθds=dθdx2+dy2

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值