数二-常微分方程

变量可分离型

y ′ = f ( x ) g ( y ) y'=f(x)g(y) y=f(x)g(y)

d y d x = f ( x ) g ( y ) ⇒ ∫ d y g ( y ) = ∫ f ( x ) d x \cfrac{dy}{dx}=f(x)g(y)\Rarr\displaystyle\int\cfrac{dy}{g(y)}=\displaystyle\int f(x)dx dxdy=f(x)g(y)g(y)dy=f(x)dx

例:
d y d x = e x − y = e x ∗ e − y ⇒ ∫ e y d y = ∫ e x d x ⇒ { e y = e x + C ( 隐 式 解 ) . y = ln ⁡ ( e x + C ) ( 显 式 解 ) 。 \begin{aligned} &\cfrac{dy}{dx}=e^{x-y}=e^x*e^{-y}\\ \Rarr&\int e^ydy=\int e^xdx\\ \Rarr&\begin{cases} e^y=e^x+C(隐式解). \\ y=\ln(e^x+C)(显式解)。 \end{cases} \end{aligned} dxdy=exy=exeyeydy=exdx{ey=ex+C.y=ln(ex+C)

可化为分离变量型

d y d x = f ( a x + b y + c ) \cfrac{dy}{dx}=f(ax+by+c) dxdy=f(ax+by+c)

u = a x + b y + c , d u d x = a + b d y d x    则 : u=ax+by+c, \cfrac{du}{dx}=a+b\cfrac{dy}{dx}\ \ 则: u=ax+by+c,dxdu=a+bdxdy  

d u d x = a + b f ( u ) \cfrac{du}{dx}=a+bf(u) dxdu=a+bf(u)


d y d x = Φ ( y x ) \cfrac{dy}{dx}=\varPhi\big(\cfrac{y}{x}\big) dxdy=Φ(xy)

令 u = y x , 则 令u=\cfrac{y}{x},则 u=xy

y = u x ⇒ d y d x = d u d x x + u y=ux\Rarr \cfrac{dy}{dx}=\cfrac{du}{dx}x+u y=uxdxdy=dxdux+u

⇒ d u d x x + u = Φ ( u ) \Rarr\cfrac{du}{dx}x+u=\varPhi(u) dxdux+u=Φ(u)

⇒ d u Φ ( u ) − u = d x x \Rarr\cfrac{du}{\varPhi(u)-u}=\cfrac{dx}{x} Φ(u)udu=xdx

一阶线性微分方程

y ′ + p ( x ) y = q ( x ) , q ( x ) 、 p ( x ) 已 知 连 续 函 数 , 通 解 公 式 为 : y'+p(x)y=q(x),q(x)、p(x)已知连续函数,通解公式为: y+p(x)y=q(x)q(x)p(x)

y = e − ∫ p ( x ) d x [ ∫ e ∫ p ( x ) d x q ( x ) d x + C ] y=e^{-\int p(x)dx}\bigg[\int e^{\int p(x)dx}q(x)dx+C\bigg] y=ep(x)dx[ep(x)dxq(x)dx+C]

推导过程

y ′ + p ( x ) y = q ( x ) ⇒ e ∫ p ( x ) d x [ y ′ + p ( x ) y ] = q ( x ) ∗ e ∫ p ( x ) d x ⇒ [ e ∫ p ( x ) d x y ] ′ = e ∫ p ( x ) d x q ( x ) ⇒ e ∫ p ( x ) d x y = ∫ e ∫ p ( x ) d x q ( x ) d x + C ⇒ y = e − ∫ p ( x ) d x [ ∫ e ∫ p ( x ) d x q ( x ) d x + C ] \begin{gathered} &y'+p(x)y=q(x)\\ \Rarr&e^{\int p(x)dx}[y'+p(x)y]=q(x)*e^{\int p(x)dx}\\ \Rarr&\big[e^{\int p(x)dx}y\big]'=e^{\int p(x)dx}q(x)\\ \Rarr&e^{\int p(x)dx}y=\int e^{\int p(x)dx}q(x)dx+C\\ \Rarr&y=e^{-\int p(x)dx}\bigg[\int e^{\int p(x)dx}q(x)dx+C\bigg] \end{gathered} y+p(x)y=q(x)ep(x)dx[y+p(x)y]=q(x)ep(x)dx[ep(x)dxy]=ep(x)dxq(x)ep(x)dxy=ep(x)dxq(x)dx+Cy=ep(x)dx[ep(x)dxq(x)dx+C]

伯努利方程(仅数一,做了解)

y ′ + p ( x ) y = q ( x ) y n y'+p(x)y=q(x)y^n y+p(x)y=q(x)yn

  1. 变形为 y − n ∗ y ′ + p ( x ) y 1 − n = q ( x ) y^{-n}*y'+p(x)y^{1-n}=q(x) yny+p(x)y1n=q(x)
  2. z = y 1 − n z=y^{1-n} z=y1n得, d z d x = ( 1 − n ) y − n d y d x \cfrac{dz}{dx}=(1-n)y^{-n}\cfrac{dy}{dx} dxdz=(1n)yndxdy
  3. 1 1 − n ∗ d z d x + p ( x ) z = q ( x ) , 求 解 \cfrac{1}{1-n}*\cfrac{dz}{dx}+p(x)z=q(x),求解 1n1dxdz+p(x)z=q(x)

二阶可降阶微分方程求解

y ′ ′ = f ( x , y ′ ) y''=f(x,y') y=f(x,y)

  1. y ′ = p ( x ) , y ′ ′ = p ′ y'=p(x),y''=p' y=p(x)y=p,则 d p d x = f ( x , p ) \cfrac{dp}{dx}=f(x,p) dxdp=f(x,p).
  2. 求得 p = φ ( x , C 1 ) p=\varphi(x,C_1) p=φ(x,C1),即 y ′ = φ ( x , C 1 ) y'=\varphi(x,C_1) y=φ(x,C1)
  3. y = ∫ φ ( x , C 1 ) d x + C 2 . y=\displaystyle\int\varphi(x,C_1)dx+C_2. y=φ(x,C1)dx+C2.

y ′ ′ = f ( y , y ′ ) y''=f(y,y') y=f(y,y)

  1. y ′ = p , y ′ ′ = d p d y ∗ d y d x = d p d y ∗ p , 则 原 方 程 p d p d y = f ( y , p ) y'=p,y''=\cfrac{dp}{dy}*\cfrac{dy}{dx}=\cfrac{dp}{dy}*p,则原方程 p\cfrac{dp}{dy}=f(y,p) y=p,y=dydpdxdy=dydpppdydp=f(y,p)
  2. 求得 p = φ ( y , C 1 ) p=\varphi(y,C_1) p=φ(y,C1),分离变量得 d y φ ( y , C 1 ) = d x . \cfrac{dy}{\varphi(y,C_1)}=dx. φ(y,C1)dy=dx.
  3. 原方程通解为: ∫ d y φ ( y , C 1 ) = x + C 2 \displaystyle\int\cfrac{dy}{\varphi(y,C_1)}=x+C_2 φ(y,C1)dy=x+C2

高阶线性微分方程求解

概念

y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) y''+p(x)y'+q(x)y=f(x) y+p(x)y+q(x)y=f(x)称为二阶变系数线性微分方程,p(x), q(x)称为系数函数,f(x)称为自由项,均为连续函数。

  1. f ( x ) ≡ 0 时 , y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 f(x)\equiv0时,y''+p(x)y'+q(x)y=0 f(x)0y+p(x)y+q(x)y=0齐次方程
  2. f ( x ) 不 恒 为 0 时 , y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) f(x)不恒为0时,y''+p(x)y'+q(x)y=f(x) f(x)0y+p(x)y+q(x)y=f(x)非齐次方程

y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y+py+qy=f(x)称为二阶常系数线性微分方程,p, q称为常数,f(x)称为自由项。

  1. f ( x ) ≡ 0 时 , y ′ ′ + p y ′ + q y = 0 f(x)\equiv0时,y''+py'+qy=0 f(x)0y+py+qy=0齐次方程
  2. f ( x ) 不 恒 为 0 时 , y ′ ′ + p y ′ + q y = f ( x ) f(x)不恒为0时,y''+py'+qy=f(x) f(x)0y+py+qy=f(x)非齐次方程

解的结构

  1. 若 y 1 ( x ) , y 2 ( x ) 是 y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 的 两 个 解 , 且 y 1 ( x ) y 2 ( x ) ≠ C , 则 称 y 1 ( x ) , y 2 ( x ) 是 两 个 线 性 无 关 的 解 。 且 y ( x ) = C 1 y ( x ) + C 2 y 2 ( x ) 是 方 程 的 y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 的 通 解 。 若y_1(x), y_2(x)是y''+p(x)y'+q(x)y=0的两个解,且\cfrac{y_1(x)}{y_2(x)}\neq C,则称y_1(x),y_2(x)是两个线性无关的解。且y(x)=C_1y_(x)+C_2y_2(x)是方程的y''+p(x)y'+q(x)y=0的通解。 y1(x),y2(x)y+p(x)y+q(x)y=0y2(x)y1(x)=Cy1(x)y2(x)线y(x)=C1y(x)+C2y2(x)y+p(x)y+q(x)y=0
  2. 若 y ( x ) = C 1 y ( x ) + C 2 y 2 ( x ) 是 方 程 的 y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 的 通 解 , y ∗ ( x ) 是 y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) 的 一 个 特 解 , 则 y ( x ) + y ∗ ( x ) 是 y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) 的 通 解 。 若y(x)=C_1y_(x)+C_2y_2(x)是方程的y''+p(x)y'+q(x)y=0的通解,y^*(x)是y''+p(x)y'+q(x)y=f(x)的一个特解,则y(x)+y^*(x)是y''+p(x)y'+q(x)y=f(x)的通解。 y(x)=C1y(x)+C2y2(x)y+p(x)y+q(x)y=0y(x)y+p(x)y+q(x)y=f(x)y(x)+y(x)y+p(x)y+q(x)y=f(x)
  3. y 1 ∗ ( x ) 是 y ′ ′ + p ( x ) y ′ + q ( x ) y = f 1 ( x ) 的 解 , y 2 ∗ ( x ) 是 y ′ ′ + p ( x ) y ′ + q ( x ) y = f 2 ( x ) 的 解 , y 1 ∗ ( x ) + y 2 ∗ ( x ) 是 y ′ ′ + p ( x ) y ′ + q ( x ) y = f 1 ( x ) + f 2 ( x ) 的 解 。 y_1^*(x)是y''+p(x)y'+q(x)y=f_1(x)的解,y_2^*(x)是y''+p(x)y'+q(x)y=f_2(x)的解,y_1^*(x)+y_2^*(x)是y''+p(x)y'+q(x)y=f_1(x)+f_2(x)的解。 y1(x)y+p(x)y+q(x)y=f1(x)y2(x)y+p(x)y+q(x)y=f2(x)y1(x)+y2(x)y+p(x)y+q(x)y=f1(x)+f2(x)

两个线性无关非齐次的特解相减再乘以C 是对应的齐次方程的通解 齐次通解+非齐次一个特解 = 非齐次通解

*二阶常系数齐次微分方程的通解

对于 y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y+py+qy=0,其对应的特征方程为 λ 2 + p λ + q = 0 \lambda^2+p\lambda+q=0 λ2+pλ+q=0,求其特征根有以下三种情况:

  1. p 2 − 4 q > 0 p^2-4q>0 p24q>0, 设 λ 1 , λ 2 \lambda_1, \lambda_2 λ1,λ2是特征方程的两个不等实根,即 λ 1 ≠ λ 2 \lambda_1\neq\lambda_2 λ1=λ2,可得通解:
    y = C 1 e λ 1 x + C 2 λ 2 x . y=C_1e^{\lambda_1x}+C_2^{\lambda_2x}. y=C1eλ1x+C2λ2x.

  2. p 2 − 4 q = 0 p^2-4q=0 p24q=0, 设 λ 1 , λ 2 \lambda_1, \lambda_2 λ1,λ2是特征方程的两个相等实根,即二重根,令 λ 1 = λ 2 = λ \lambda_1=\lambda_2=\lambda λ1=λ2=λ得:
    y = ( C 1 + C 2 x ) e λ x . y=(C_1+C_2x)e^{\lambda x}. y=(C1+C2x)eλx.

  3. p 2 − 4 q < 0 p^2-4q<0 p24q<0,设 α ± β i \alpha\pm\beta i α±βi是特征方程的一对共轭复根,可得其通解:
    y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) . y=e^{\alpha x}(C_1\cos \beta x+C_2\sin \beta x). y=eαx(C1cosβx+C2sinβx).

二阶常系数非齐次线性方程的特解

对于 y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y+py+qy=f(x),设 P n ( x ) , P m ( x ) P_n(x),P_m(x) Pn(x),Pm(x)分别为 x 的 n 次,m次多项式。

自由项 f ( x ) = P n ( x ) e α x f(x)=P_n(x)e^{\alpha x} f(x)=Pn(x)eαx

特解设为 y ∗ = e α x Q n ( x ) x k y^*=e^{\alpha x}Q_n(x)x^k y=eαxQn(x)xk,其中
{ e α x 照 抄 , Q n ( x ) 为 x 的 n 次 多 项 式 , k = { 0 , α ≠ λ 1 且 α ≠ λ 2 1 , α = λ 1 或 α = λ 2 且 λ 1 ≠ λ 2 2 , α = λ 1 = λ 2 \begin{cases} e^{\alpha x}照抄, \\ Q_n(x)为x的n次多项式,\\ \\ k=\begin{cases} 0,&\alpha\neq\lambda_1且\alpha\neq\lambda_2 \\ 1,&\alpha=\lambda_1或\alpha=\lambda_2且\lambda_1\neq\lambda_2\\ 2,&\alpha=\lambda_1=\lambda_2 \end{cases} \end{cases} eαxQn(x)xn,k=012,α=λ1α=λ2α=λ1α=λ2λ1=λ2α=λ1=λ2

自由项 f ( x ) = e α x [ P m ( x ) cos ⁡ β x + P n ( x ) sin ⁡ β x ] f(x)=e^{\alpha x}[P_m(x)\cos \beta x+P_n(x)\sin \beta x] f(x)=eαx[Pm(x)cosβx+Pn(x)sinβx]

特解设为 y ∗ = e α x [ Q l ( 1 ) ( x ) cos ⁡ β x + Q l ( 2 ) sin ⁡ β x ] x k y^*=e^{\alpha x}[Q_l^{(1)}(x)\cos \beta x+Q_l^{(2)}\sin \beta x]x^k y=eαx[Ql(1)(x)cosβx+Ql(2)sinβx]xk,其中
{ e α x 照 抄 , l = m a x { n , m } , Q l ( 1 ) , Q l ( 2 ) 分 别 为 x 的 两 个 不 同 的 l 次 多 项 式 k = { 0 , α ± β i 不 是 特 征 跟 , 1 , α ± β i 是 特 征 根 \begin{cases} e^{\alpha x}照抄, \\ l=max\{n,m\},Q^{(1)}_l,Q_l^{(2)}分别为x的两个不同的l次多项式\\ \\ k=\begin{cases} 0,&\alpha\pm\beta i不是特征跟, \\ 1,&\alpha\pm\beta i是特征根 \end{cases} \end{cases} eαxl=max{n,m},Ql(1),Ql(2)xlk={01α±βiα±βi

计算方法

微分算子法

y ′ ′ + p y ′ + q = f ( x ) y''+py'+q=f(x) y+py+q=f(x)

D f ( x ) Df(x) Df(x)表示对 f ( x ) f(x) f(x)求导
1 D f ( x ) \cfrac{1}{D}f(x) D1f(x)表示对 f ( x ) f(x) f(x)微分

  • f ( x ) = k e α x f(x)=ke^{\alpha x} f(x)=keαx
    y ∗ = 1 D 2 + p D + q k e α x y^*=\cfrac{1}{D^2+pD+q}ke^{\alpha x} y=D2+pD+q1keαx
    ② 对应规则 D = α D=\alpha D=α,若分母等0,则分母求导分子乘x,直到分母不为0.
  • f ( x ) = k sin ⁡ α x / k cos ⁡ α x f(x)=k\sin\alpha x/k\cos\alpha x f(x)=ksinαx/kcosαx
    f ( x ) = k sin ⁡ α x f(x)=k\sin\alpha x f(x)=ksinαx为例
    y ∗ = 1 D 2 + p D + q k sin ⁡ α x y^*=\cfrac{1}{D^2+pD+q}k\sin\alpha x y=D2+pD+q1ksinαx
    ② 对应规则 − α 2 = D 2 -\alpha^2=D^2 α2=D2
    注:D的意义求导,非数值
    y ∗ = 1 p D + ( q − α 2 ) k sin ⁡ α x y^*=\cfrac{1}{pD+(q-\alpha^2)}k\sin\alpha x y=pD+(qα2)1ksinαx分子分母同时乘 [ p D − ( q − α 2 ) ] [pD-(q-\alpha^2)] [pD(qα2)],
    y ∗ = p D − ( q − α 2 ) ( p D ) 2 − ( q − α 2 ) 2 k sin ⁡ α x = p k ( p D ) 2 − ( q − α 2 ) 2 [ D sin ⁡ α x ] − ( q − α 2 ) ( p D ) 2 − ( q − α 2 ) 2 k sin ⁡ α x = p k ( p D ) 2 − ( q − α 2 ) 2 α cos ⁡ α x − ( q − α 2 ) ( p D ) 2 − ( q − α 2 ) 2 k sin ⁡ α x \begin{gathered} y^*&=&\cfrac{pD-(q-\alpha^2)}{(pD)^2-(q-\alpha^2)^2}k\sin\alpha x\\ &=&\cfrac{pk}{(pD)^2-(q-\alpha^2)^2}[D\sin\alpha x]-\cfrac{(q-\alpha^2)}{(pD)^2-(q-\alpha^2)^2}k\sin\alpha x\\ &=&\cfrac{pk}{(pD)^2-(q-\alpha^2)^2}\alpha\cos\alpha x-\cfrac{(q-\alpha^2)}{(pD)^2-(q-\alpha^2)^2}k\sin\alpha x \end{gathered} y===(pD)2(qα2)2pD(qα2)ksinαx(pD)2(qα2)2pk[Dsinαx](pD)2(qα2)2(qα2)ksinαx(pD)2(qα2)2pkαcosαx(pD)2(qα2)2(qα2)ksinαx

应用

牛顿第二定律

在这里插入图片描述

变化率问题

在这里插入图片描述

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值