数二-一元函数微分学

基础

∫ x k d x = 1 ( k + 1 ) x ( k + 1 ) + C ∫ 1 x d x = ln ⁡ ∣ x ∣ + C ∫ e x d x = e x + C , ∫ a x d x = 1 ln ⁡ a a x + C ∫ ln ⁡ x = x ln ⁡ x + C ∫ sin ⁡ x d x = − cos ⁡ x + C , ∫ cos ⁡ x = sin ⁡ x + C ∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C , ∫ cot ⁡ x = ln ⁡ ∣ sin ⁡ x ∣ + C ∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C ∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C ∫ sec ⁡ 2 x d x = tan ⁡ x + C , ∫ csc ⁡ 2 x d x = − cot ⁡ x + C ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C , ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C ∫ 1 1 + x 2 d x = arctan ⁡ x + C , ∫ 1 a 2 + x 2 d x = 1 a arctan ⁡ x a + C ∫ 1 1 − x 2 d x = arcsin ⁡ x + C , ∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C ∫ 1 x 2 + a 2 d x = ln ⁡ ( x + x 2 + a 2 ) + C , ∫ 1 x 2 − a 2 d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C ∫ 1 x 2 − a 2 d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C , ∫ 1 a 2 − x 2 d x = 1 2 a ln ⁡ ∣ x + a x − a ∣ + C ∫ a 2 − x 2 d x = a 2 2 arcsin ⁡ x a + x 2 a 2 − x 2 + C ∫ sin ⁡ 2 x d x = 1 2 x − sin ⁡ 2 x 4 + C ( sin ⁡ 2 x = 1 − cos ⁡ 2 x 2 ) ∫ cos ⁡ 2 x d x = 1 2 x + sin ⁡ 2 x 4 + C ( cos ⁡ 2 x = 1 + cos ⁡ 2 x 2 ) ∫ tan ⁡ 2 x d x = tan ⁡ x − x + C ( tan ⁡ 2 x = sec ⁡ 2 − 1 ) ∫ cot ⁡ 2 x d x = − cot ⁡ x − x + C ( cot ⁡ 2 x = csc ⁡ 2 x − 1 ) \displaystyle\int x^kdx=\cfrac{1}{(k+1)}x^{(k+1)}+C\\ \displaystyle\int \cfrac{1}{x}dx=\ln|x|+C\\ \displaystyle\int e^xdx=e^x+C,\displaystyle\int a^xdx=\cfrac{1}{\ln a}a^x+C\\ \displaystyle\int \ln x=x\ln x +C\\ \displaystyle\int \sin xdx=-\cos x+C,\displaystyle\int \cos x=\sin x+C\\ \displaystyle\int \tan xdx=-\ln |\cos x|+C,\displaystyle\int \cot x=\ln |\sin x|+C\\ \displaystyle\int \sec xdx=\ln|\sec x+\tan x|+C\\ \displaystyle\int \csc xdx=\ln|\csc x-\cot x|+C\\ \displaystyle\int \sec^2xdx=\tan x+C,\displaystyle\int \csc^2 xdx=-\cot x+C\\ \displaystyle\int \sec x\tan xdx=\sec x+C,\displaystyle\int \csc x\cot xdx=-\csc x+C\\ \displaystyle\int \cfrac{1}{1+x^2}dx=\arctan x+C,\displaystyle\int\cfrac{1}{a^2+x^2}dx=\cfrac{1}{a}\arctan\cfrac{x}{a}+C\\ \displaystyle\int \cfrac{1}{\sqrt{1-x^2}}dx=\arcsin x+C,\displaystyle\int \cfrac{1}{\sqrt{a^2-x^2}}dx=\arcsin\cfrac{x}{a}+C\\ \displaystyle\int \cfrac{1}{\sqrt{x^2+a^2}}dx=\ln(x+\sqrt{x^2+a^2})+C,\\ \displaystyle\int \cfrac{1}{\sqrt{x^2-a^2}}dx=\ln|x+\sqrt{x^2-a^2}|+C\\ \displaystyle\int \cfrac{1}{x^2-a^2}dx=\cfrac{1}{2a}\ln\bigg|\cfrac{x-a}{x+a}\bigg|+C,\displaystyle\int \cfrac{1}{a^2-x^2}dx=\cfrac{1}{2a}\ln\bigg|\cfrac{x+a}{x-a}\bigg|+C\\ \displaystyle\int \sqrt{a^2-x^2}dx=\cfrac{a^2}{2}\arcsin \cfrac{x}{a}+\cfrac{x}{2}\sqrt{a^2-x^2}+C\\ \displaystyle\int \sin^2xdx=\cfrac{1}{2}x-\cfrac{\sin 2x}{4}+C\big(\sin^2x=\cfrac{1-\cos2x}{2}\big)\\ \displaystyle\int \cos^2xdx=\cfrac{1}{2}x+\cfrac{\sin 2x}{4}+C\big(\cos^2x=\cfrac{1+\cos2x}{2}\big)\\ \displaystyle\int \tan^2xdx=\tan x-x+C(\tan^2x=\sec^2-1)\\ \displaystyle\int \cot^2xdx=-\cot x-x+C(\cot^2x=\csc^2x-1) xkdx=(k+1)1x(k+1)+Cx1dx=lnx+Cexdx=ex+C,axdx=lna1ax+Clnx=xlnx+Csinxdx=cosx+C,cosx=sinx+Ctanxdx=lncosx+C,cotx=lnsinx+Csecxdx=lnsecx+tanx+Ccscxdx=lncscxcotx+Csec2xdx=tanx+C,csc2xdx=cotx+Csecxtanxdx=secx+C,cscxcotxdx=cscx+C1+x21dx=arctanx+C,a2+x21dx=a1arctanax+C1x2 1dx=arcsinx+C,a2x2 1dx=arcsinax+Cx2+a2 1dx=ln(x+x2+a2 )+C,x2a2 1dx=lnx+x2a2 +Cx2a21dx=2a1lnx+axa+C,a2x21dx=2a1lnxax+a+Ca2x2 dx=2a2arcsinax+2xa2x2 +Csin2xdx=21x4sin2x+C(sin2x=21cos2x)cos2xdx=21x+4sin2x+C(cos2x=21+cos2x)tan2xdx=tanxx+C(tan2x=sec21)cot2xdx=cotxx+C(cot2x=csc2x1)

一次三角函数分式配系数方法

求 ∫ sin ⁡ x − cos ⁡ x sin ⁡ x + 2 cos ⁡ x d x 求\displaystyle\int\cfrac{\sin x-\cos x}{\sin x+2\cos x}dx sinx+2cosxsinxcosxdx

令 sin ⁡ x − cos ⁡ x = a ( sin ⁡ x + 2 cos ⁡ x ) + b ( sin ⁡ x + 2 cos ⁡ x ) ′ 解 得 : a = − 1 5 , b = − 3 5 ∴ ∫ sin ⁡ x − cos ⁡ x sin ⁡ x + 2 cos ⁡ x d x = − 1 5 ∫ d x − 3 5 ∫ d ( sin ⁡ x + 2 cos ⁡ x ) sin ⁡ x + 2 cos ⁡ x = − 1 5 − 3 5 ln ⁡ ∣ sin ⁡ x + 2 cos ⁡ x ∣ + C 令\sin x-\cos x=a(\sin x+2\cos x)+b(\sin x+2\cos x)'\\ 解得:a=-\cfrac{1}{5},b=-\cfrac{3}{5}\\ \\ \therefore\begin{aligned} \displaystyle\int\cfrac{\sin x-\cos x}{\sin x+2\cos x}dx=&-\cfrac{1}{5}\displaystyle\int dx-\cfrac{3}{5}\displaystyle\int\cfrac{d(\sin x+2\cos x)}{\sin x+2\cos x} \\ =&-\cfrac{1}{5}-\cfrac{3}{5}\ln|\sin x+2\cos x|+C \end{aligned} sinxcosx=a(sinx+2cosx)+b(sinx+2cosx)a=51,b=53sinx+2cosxsinxcosxdx==51dx53sinx+2cosxd(sinx+2cosx)5153lnsinx+2cosx+C

华理士公式

∫ 0 π 2 sin ⁡ n x = ∫ 0 π 2 cos ⁡ n x = { n − 1 n ∗ n − 3 n − 2 ∗ ⋯ ∗ 1 2 ∗ π 2 n 为 偶 数 n − 1 n ∗ n − 3 n − 2 ∗ ⋯ ∗ 2 3 n 为 奇 数 \displaystyle\int_0^{\cfrac{\pi}{2}}\sin^n x=\displaystyle\int_0^{\cfrac{\pi}{2}}\cos^n x=\begin{cases} \cfrac{n-1}{n}*\cfrac{n-3}{n-2}*\dots*\cfrac{1}{2}*\cfrac{\pi}{2}&n为偶数 \\ \cfrac{n-1}{n}*\cfrac{n-3}{n-2}*\dots*\cfrac{2}{3}&n为奇数 \end{cases} 02πsinnx=02πcosnx=nn1n2n3212πnn1n2n332nn

常见有原函数,但无初等函数形式的原函数

主要用于二重积分,积分次序的选择。

{ ∫ sin ⁡ x x d x ∫ cos ⁡ x x d x ∫ tan ⁡ x x d x ∫ e x x d x ∫ sin ⁡ 1 x d x ∫ cos ⁡ 1 x d x ∫ e a x 2 + b x + c d x ∫ d x ln ⁡ x \begin{cases} \displaystyle\int \cfrac{\sin x}{x}dx \displaystyle\int \cfrac{\cos x}{x}dx \displaystyle\int\cfrac{\tan x}{x}dx\\ \\ \displaystyle\int \cfrac{e^x}{x}dx \displaystyle\int \sin\cfrac{1}{x}dx \displaystyle\int \cos\cfrac{1}{x}dx \\ \\ \displaystyle\int e^{ax^2+bx+c}dx \displaystyle\int \cfrac{dx}{\ln x} \end{cases} xsinxdxxcosxdxxtanxdxxexdxsinx1dxcosx1dxeax2+bx+cdxlnxdx

定积分

定积分精确定义

∫ a b f ( x ) d x = lim ⁡ n → ∞ ∑ i = 1 n f ( a + b − a n i ) b − a n \displaystyle\int_a^bf(x)dx=\lim\limits_{n\to\infty}\sum_{i=1}^{n}f(a+\cfrac{b-a}{n}i)\cfrac{b-a}{n} abf(x)dx=nlimi=1nf(a+nbai)nba
当a=0,b=1时
∫ 0 1 f ( x ) d x = lim ⁡ n → ∞ ∑ i = 1 n f ( i n ) 1 n \displaystyle\int_0^1f(x)dx=\lim\limits_{n\to\infty}\sum_{i=1}^{n}f(\cfrac{i}{n})\cfrac{1}{n} 01f(x)dx=nlimi=1nf(ni)n1

*定积分精确定义与夹逼定理综合应用

求 极 限 lim ⁡ n → ∞ ∑ i = 1 n sin ⁡ i π n n + 1 i 求极限\lim\limits_{n\to\infty}\sum_{i=1}^{n}\cfrac{\sin\cfrac{i\pi}{n}}{n+\cfrac{1}{i}} nlimi=1nn+i1sinniπ

f ( x ) = sin ⁡ i π n n ∗ n n + 1 = sin ⁡ i π n n + 1 ≤ sin ⁡ i π n n + 1 i ≤ sin ⁡ i π n n = g ( x ) f(x)=\cfrac{\sin\cfrac{i\pi}{n}}{n}*\cfrac{n}{n+1}=\cfrac{\sin\cfrac{i\pi}{n}}{n+1}\le\cfrac{\sin\cfrac{i\pi}{n}}{n+\cfrac{1}{i}}\le\cfrac{\sin\cfrac{i\pi}{n}}{n}=g(x) f(x)=nsinniπn+1n=n+1sinniπn+i1sinniπnsinniπ=g(x)

∫ 0 1 f ( x ) d x = ∫ 0 1 sin ⁡ π x d x = 2 π \displaystyle\int_0^1f(x)dx=\displaystyle\int_0^1\sin\pi x dx=\cfrac{2}{\pi} 01f(x)dx=01sinπxdx=π2
同理: ∫ 0 1 g ( x ) d x = 2 π \displaystyle\int_0^1g(x)dx=\cfrac{2}{\pi} 01g(x)dx=π2
有夹逼定理得:
lim ⁡ n → ∞ ∑ i = 1 n sin ⁡ i π n n + 1 i = 2 π \lim\limits_{n\to\infty}\sum_{i=1}^{n}\cfrac{\sin\cfrac{i\pi}{n}}{n+\cfrac{1}{i}}=\cfrac{2}{\pi} nlimi=1nn+i1sinniπ=π2

定积分存在定理

  1. 若 f ( x ) 在 [ a , b ] 上 连 续 , 则 ∫ a b f ( x ) d x 存 在 . 若f(x)在[a,b]上连续,则\displaystyle\int_a^bf(x)dx存在. f(x)[a,b],abf(x)dx.
  2. 若 f ( x ) 在 [ a , b ] 上 单 调 , 则 ∫ a b f ( x ) d x 存 在 . 若f(x)在[a,b]上单调,则\displaystyle\int_a^bf(x)dx存在. f(x)[a,b],abf(x)dx.
  3. 若 f ( x ) 在 [ a , b ] 上 有 界 , 且 只 有 有 限 个 间 断 点 , 则 ∫ a b f ( x ) d x 存 在 . 若f(x)在[a,b]上有界,且只有有限个间断点,则\displaystyle\int_a^bf(x)dx存在. f(x)[a,b]abf(x)dx.

原函数(不定积分)存在定理

  1. 连 续 函 数 f ( x ) 必 有 原 函 数 . 连续函数f(x)必有原函数. f(x).
  2. 含 有 第 一 类 间 断 点 、 无 穷 间 断 点 的 函 数 f ( x ) 在 包 含 间 断 点 的 区 间 必 没 有 原 函 数 F ( x ) . 含有第一类间断点、无穷间断点的函数f(x)在包含间断点的区间必没有原函数F(x). f(x)F(x).

定积分计算(牛顿-莱布尼兹公式)

∫ a b f ( x ) d x = F ′ ( x ) = f ( x ) F ( b ) − F ( a ) \displaystyle\int_a^bf(x)dx\xlongequal{F'(x)=f(x)}F(b)-F(a) abf(x)dxF(x)=f(x) F(b)F(a)

分部积分法

∫ a b u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) ∣ a b − ∫ a b v ( x ) u ′ ( x ) d x \displaystyle\int_a^bu(x)v'(x)dx=u(x)v(x)\bigg|_a^b-\displaystyle\int_a^bv(x)u'(x)dx abu(x)v(x)dx=u(x)v(x)ababv(x)u(x)dx

建议看张宇图标法,在多次分部积分上,相对更直观,这里不再过多赘述。
相关视频笔者已经上传公众号“翼点通”,回复张宇即可。

Γ \Gamma Γ函数

变限积分

变限积分求导公式

[ ∫ g ( x ) h ( x ) f ( t ) d t ] ′ = f [ h ( x ) ] h ′ ( x ) − f [ g ( x ) ] g ′ ( x ) \bigg[\displaystyle\int_{g(x)}^{h(x)}f(t)dt\bigg]'=f[h(x)]h'(x)-f[g(x)]g'(x) [g(x)h(x)f(t)dt]=f[h(x)]h(x)f[g(x)]g(x)

平面图形面积

  • 曲 线 y = y 1 ( x ) 和 y = y 2 ( x ) 在 x = a , 到 x = b 所 围 成 的 面 积 曲线y=y_1(x)和y=y_2(x)在x=a,到x=b所围成的面积 线y=y1(x)y=y2(x)x=a,x=b
    S = ∫ a b ∣ y 1 ( x ) − y 2 ( x ) ∣ d x S=\displaystyle\int_a^b|y_1(x)-y_2(x)|dx S=aby1(x)y2(x)dx

  • 曲 线 r = r 1 ( ϑ ) 和 r = r 2 ( ϑ ) 在 射 线 ϑ = α , ϑ = β 所 围 成 的 扇 形 面 积 曲线r=r_1(\vartheta)和r=r_2(\vartheta)在射线\vartheta=\alpha,\vartheta=\beta所围成的扇形面积 线r=r1(ϑ)r=r2(ϑ)线ϑ=α,ϑ=β
    S = 1 2 ∫ α β ∣ r 1 2 ( ϑ ) − r 2 2 ( ϑ ) ∣ d ϑ S=\cfrac{1}{2}\displaystyle\int_\alpha^\beta|r^2_1(\vartheta)-r^2_2(\vartheta)|d\vartheta S=21αβr12(ϑ)r22(ϑ)dϑ

参数方程面积计算

{ x = x ( t ) y = y ( t ) f ( x ) = y ( t ) x ( t ) \begin{cases} x=x(t)\\ y=y(t) \end{cases}f(x)=\cfrac{y(t)}{x(t)} {x=x(t)y=y(t)f(x)=x(t)y(t)
S = ∫ α β f ( x ) d x = ∫ t ( α ) t ( β ) y ( t ) x ′ ( t ) d t \begin{aligned} S&=\displaystyle\int_\alpha^\beta f(x)dx \\ &=\displaystyle\int_{t(\alpha)}^{t(\beta)}y(t)x'(t)dt \end{aligned} S=αβf(x)dx=t(α)t(β)y(t)x(t)dt

函数面积与旋转体体积

S = ∫ a b y ( x ) d x S=\displaystyle\int_a^by(x)dx S=aby(x)dx
V x = ∫ a b π y 2 ( x ) d x V_x=\displaystyle\int_a^b\pi y^2(x)dx Vx=abπy2(x)dx
V y = ∫ a b 2 π x y ( x ) d x V_y=\displaystyle\int_a^b2\pi x y(x)dx Vy=ab2πxy(x)dx

应用

曲率与曲率半径

在这里插入图片描述

变力沿直线做功

在这里插入图片描述

*抽水做功

在这里插入图片描述

水压力

在这里插入图片描述

形心坐标

在这里插入图片描述

弧长

在这里插入图片描述

旋转曲面的表面积

在这里插入图片描述

平行截面面积已知的立体体积

在这里插入图片描述

在这里插入图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值