动态规划——五大常用算法之一

本文详细介绍了动态规划的基本概念、思想、适用情况和经典例题,如爬楼梯、0-1背包问题。动态规划适用于具有最优子结构、无后效性和有重叠子问题的问题,通过划分阶段、确定状态和状态转移方程进行求解。算法实现关键在于设计递推关系,其优势在于减少重复计算。
摘要由CSDN通过智能技术生成

动态规划

1、基本概念:

动态规划就是:每走一步,都会根据之前的情况来决定这一步的走向,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

2、基本思想与策略:

与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。

与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。

3、经典例题:

    这里我们用2个经典例题来解释到底什么是动态规划。

(1)爬楼梯算法:

     爬楼梯——动态规划(java

(2)0-1背包问题:

     0-1背包问题(动态规划)附例题详解

还有很多经典例题:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值