一、反转部分单向链表
题目描述:
给定一个单链表,在链表中把第 L 个节点到第 R 个节点这一部分进行反转。
输入描述:
n 表示单链表的长度。
val 表示单链表各个节点的值。
L 表示翻转区间的左端点。
R 表示翻转区间的右端点。
输出描述:
在给定的函数中返回指定链表的头指针。
补充说明:
1<=n<=1000000
1<=L<=R<=n
-1000000<=val<=1000000
示例
输入:5
1 2 3 4 5
1 3
输出:3 2 1 4 5
题目解析:
本题考察关于链表的基本操作,首先需要我们手动写一个结点类,包含此时的值和连接下一个结点的指向。
在主函数中,将输入的数据先存入数组,然后设置一个头结点,通过遍历数组,将值赋给当前结点,依次如此建立链表,然后就是对该链表进行部分反转的操作。
这里使用一个方法实现反转部分链表的功能,将链表的头结点,反转的起始位置和结束位置传入,存下起始位置的前一个位置pre,设立一个临时结点temp,指向当前结点cur的下一个结点,然后让当前结点指向temp的下一个结点,temp结点指向当前结点,pre结点指向temp结点,实现将结点插入至反转的起始位置,遍历至结束位置,实现链表部分反转。
最后按照要求输出即可。
import java.util.Scanner;
class ListNode{
public int val;
public ListNode next;
public ListNode(int val){
this.val = val;
this.next = null;
}
}
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = scanner.nextInt();
}
int start = scanner.nextInt();
int end = scanner.nextInt();
ListNode head = new ListNode(arr[0]);
ListNode cur = head;
for (int i = 1; i < n; i++) {
cur.next = new ListNode(arr[i]);
cur = cur.next;
}
ListNode ans = res(head, start, end);
while(ans.next != null){
System.out.print(ans.val + " ");
ans = ans.next;
}
System.out.println(ans.val);
}
public static ListNode res(ListNode head, int start, int end){
ListNode ans = new ListNode(-1);
ans.next = head;
ListNode pre = ans;
for (int i = 1; i < start; i++) {
pre = pre.next;
}
ListNode cur = pre.next;
for (int i = start; i < end; i++) {
ListNode temp = cur.next;
cur.next = temp.next;
temp.next = pre.next;
pre.next = temp;
}
return ans.next;
}
}
二、猴子分桃
题目描述:
老猴子辛苦了一辈子,给那群小猴子们留下了一笔巨大的财富——一大堆桃子。老猴子决定把这些桃子分给小猴子。 第一个猴子来了,它把桃子分成五堆,五堆一样多,但还多出一个。它把剩下的一个留给老猴子,自己拿走其中的一堆。 第二个猴子来了,它把桃子分成五堆,五堆一样多,但又多出一个。它把多出的一个留给老猴子,自己拿走其中的一堆。 后来的小猴子都如此照办。最后剩下的桃子全部留给老猴子。 这里有n只小猴子,请你写个程序计算一下在开始时至少有多少个桃子,以及最后老猴子最少能得到几个桃子。
输入描述:
输入包括多组测试数据。 每组测试数据包括一个整数n(1≤n≤20)。 输入以0结束,该行不做处理。
输出描述:
每组测试数据对应一行输出。 包括两个整数a,b。 分别代表开始时最小需要的桃子数,和结束后老猴子最少能得到的桃子数。
示例
输入:5
1
0
输出:3121 1025
1 1
题目解析:
这道题目主要需要找到规律,寻找其中的隐含的关系。我们设本来有x个桃子,一开始就可以借给其4个桃子,实现被5均分,然后观察分桃的规律:
第一个猴子拿走: (x + 4) / 5 , 剩余: (x + 4) * (4 / 5)
第二个猴子拿走:(x + 4) * (4 / 5) / 5 , 剩余: (x + 4) * (4 / 5) * (4 / 5)
第三个猴子拿走:(x + 4) * (4 / 5) / 5 / 5 , 剩余: (x + 4) * (4 / 5) * (4 / 5) * (4 / 5)
第n个猴子拿走后剩余:(x + 4) * ((4 / 5)) ^ n
由于剩余的桃子是整数,所以可以得到关系:x + 4 = 5 ^ n
即x = 5 ^ n - 4 ,x为一开始的桃子数。
将 x = 5 ^ n - 4 代入 (x + 4) * ((4 / 5)) ^ n 得到:
老猴子最后得到的桃子数:4 ^ n 然后再加上n个猴子每次给他的一个桃子,减去一开始借给其的4个桃子,最后得到4 ^ n - 4 + n。
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
while (scanner.hasNext()){
int n = scanner.nextInt();
if(n == 0){
break;
}
//a个桃子,借给其4个
//第一个猴子:(x + 4) / 5 , 剩余 (x + 4) * (4 / 5)
//第二个猴子:(x + 4) * (4 / 5) / 5 , 剩余 (x + 4) * (4 / 5) * (4 / 5)
//第三个猴子:(x + 4) * (4 / 5) / 5 / 5 , 剩余 (x + 4) * (4 / 5) * (4 / 5) * (4 / 5)
//n...(x + 4) * ((4 / 5)) ^ n
//剩余的桃子是整数:x + 4 = 5 ^ n
//x = 5 ^ n - 4代入:
//老猴子:(x + 4) * ((4 / 5)) ^ n + n - 4
//老猴子:4 ^ n - 4 + n
long a = (long)Math.pow(5, n);
long b = (long)Math.pow(4, n);
System.out.println((a - 4) + " " + (b - 4 + n));
}
}
}
如有建议或想法,欢迎一起学习讨论~