TensorRT:数据预处理

本文记录了在将PyTorch模型迁移到TensorRT(RT)过程中遇到的数据预处理问题。主要差异在于PyTorch中数据格式为NCHW,通道顺序为RGB,数值范围0-1,而OpenCV数据则为HWC,BGR顺序,且数值范围0-255。在RT测试中,由于忽视了数据转换,导致结果不一致。解决方法包括正确处理通道顺序、归一化和数据维度排列。
摘要由CSDN通过智能技术生成

Pytorch测试正常,RT测试不一致,分析了一下,主要是数据的问题导致的差异,记录一下自己的踩坑

 

1:Pytorch数据:格式-NCHW, 通道顺序-RGB,数值范围-[0-1], 数据类型-float

"""
Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
"""

一般会碰到PIL或者cv2的使用接口:两者的差异

PIL :RGB, 0~1, CHW

numpy:BGR, 0~255,HWC

2:opencv数据格式-HWC, 通道顺序-BGR,数值范围-[0-255], 数据类型-uchar

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微风❤水墨

你的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值